Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; and Department of Physiology and Biophysics, University of Sao Paulo, Institute of Biomedical Sciences, Sao Paulo, Brazil
Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio;
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C791-813. doi: 10.1152/ajpcell.00051.2014. Epub 2014 Jun 25.
The α-carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the interconversion of CO2 and HCO3 (-). Here, we focus on human CA II (CA II), a ubiquitous cytoplasmic enzyme. In the second paper in this series, we examine CA IV at the extracellular surface. After microinjecting recombinant CA II in a Tris solution (or just Tris) into oocytes, we expose oocytes to 1.5% CO2/10 mM HCO3 (-)/pH 7.50 while using microelectrodes to monitor intracellular pH (pHi) and surface pH (pHS). CO2 influx causes the familiar sustained pHi fall as well as a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA II increases the magnitudes of the maximal rate of pHi change, (dpHi/dt)max, and the maximal change in pHS, ΔpHS. Preincubating oocytes with the inhibitor ethoxzolamide eliminates the effects of CA II. Compared with pHS, pHi begins to change only after a delay of ~9 s and its relaxation has a larger (i.e., slower) time constant (τpHi > τpHS ). Simultaneous measurements with two pHi electrodes, one superficial and one deep, suggest that impalement depth contributes to pHi delay and higher τpHi . Using higher CO2/HCO3 (-) levels, i.e., 5%/33 mM HCO3 (-) or 10%/66 mM HCO3 (-), increases (dpHi/dt)max and ΔpHS, though not in proportion to the increase in [CO2]. A reaction-diffusion mathematical model (described in the third paper in this series) accounts for the above general features and supports the conclusion that cytosolic CA-consuming entering CO2 or replenishing exiting CO2-increases CO2 fluxes across the cell membrane.
α-碳酸酐酶(CA)是一类含锌金属酶,能够催化 CO2 和 HCO3-之间的相互转化。本文聚焦于普遍存在于细胞质中的人碳酸酐酶 II(CA II)。在本系列的第二篇论文中,我们研究了细胞外表面的 CA IV。在将重组 CA II 微注射到 Tris 溶液(或仅 Tris)中的卵母细胞后,我们将卵母细胞暴露于 1.5% CO2/10 mM HCO3- / pH 7.50 中,同时使用微电极监测细胞内 pH(pHi)和表面 pH(pHS)。CO2 内流导致熟悉的持续 pHi 下降以及短暂的 pHS 上升;CO2 外排则相反。在 CO2 加入和去除过程中,CA II 都会增加 pHi 变化的最大速率(dpHi/dt)max 和 pHS 的最大变化量,ΔpHS。用抑制剂乙氧唑胺预先孵育卵母细胞可消除 CA II 的作用。与 pHS 相比,pHi 仅在延迟约 9 s 后才开始变化,其弛豫具有更大(即更慢)的时间常数(τpHi > τpHS)。使用两个 pHi 电极(一个浅层和一个深层)同时进行测量,表明插入深度有助于 pHi 延迟和更高的 τpHi。使用更高的 CO2/HCO3-水平,即 5%/33 mM HCO3-或 10%/66 mM HCO3-,会增加(dpHi/dt)max 和 ΔpHS,但增加幅度与 [CO2]的增加不成比例。反应扩散数学模型(在本系列的第三篇论文中进行了描述)解释了上述一般特征,并支持以下结论:细胞质中 CA 消耗的 CO2 进入或补充的 CO2 离开会增加跨细胞膜的 CO2 通量。