Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; and Department of Physiology and Biophysics, University of Sao Paulo, Institute of Biomedical Sciences, Sao Paulo, Brazil
Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio;
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C814-40. doi: 10.1152/ajpcell.00050.2014. Epub 2014 Jun 25.
Human carbonic anhydrase IV (CA IV) is GPI-anchored to the outer membrane surface, catalyzing CO2/HCO3 (-) hydration-dehydration. We examined effects of heterologously expressed CA IV on intracellular-pH (pHi) and surface-pH (pHS) transients caused by exposing oocytes to CO2/HCO3 (-)/pH 7.50. CO2 influx causes a sustained pHi fall and a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA IV increases magnitudes of maximal rate of pHi change (dpHi/dt)max, and maximal pHS change (ΔpHS) and decreases time constants for pHi changes (τpHi ) and pHS relaxations (τpHS ). Decreases in time constants indicate that CA IV enhances CO2 fluxes. Extracellular acetazolamide blocks all CA IV effects, but not those of injected CA II. Injected acetazolamide partially reduces CA IV effects. Thus, extracellular CA is required for, and the equivalent of cytosol-accessible CA augments, the effects of CA IV. Increasing the concentration of the extracellular non-CO2/HCO3 (-) buffer (i.e., HEPES), in the presence of extracellular CA or at high [CO2], accelerates CO2 influx. Simultaneous measurements with two pHS electrodes, one on the oocyte meridian perpendicular to the axis of flow and one downstream from the direction of extracellular-solution flow, reveal that the downstream electrode has a larger (i.e., slower) τpHS , indicating [CO2] asymmetry over the oocyte surface. A reaction-diffusion mathematical model (third paper in series) accounts for the above general features, and supports the conclusion that extracellular CA, which replenishes entering CO2 or consumes exiting CO2 at the extracellular surface, enhances the gradient driving CO2 influx across the cell membrane.
人碳酸酐酶 IV(CA IV)通过糖基磷脂酰肌醇(GPI)锚定在质膜外表面,催化 CO2/HCO3(-)水合-脱水。我们研究了异源表达的 CA IV 对卵母细胞暴露于 CO2/HCO3(-)/pH7.50 时引起的细胞内 pH(pHi)和表面 pH(pHS)瞬变的影响。CO2 内流导致持续的 pHi 下降和短暂的 pHS 上升;CO2 外流则相反。在 CO2 加入和去除过程中,CA IV 增加了 pHi 变化最大速率(dpHi/dt)max、最大 pHS 变化(ΔpHS)和 pHi 变化时间常数(τpHi)和 pHS 弛豫时间常数(τpHS)的降低。时间常数的降低表明 CA IV 增强了 CO2 通量。细胞外乙酰唑胺阻断了所有 CA IV 的作用,但不阻断注射的 CA II 的作用。注射的乙酰唑胺部分降低了 CA IV 的作用。因此,细胞外 CA 是必需的,并且可到达细胞质的 CA 等效物增强了 CA IV 的作用。在存在细胞外 CA 或高[CO2]的情况下,增加细胞外非 CO2/HCO3(-)缓冲液(即 HEPES)的浓度会加速 CO2 内流。用两个 pHS 电极同时测量,一个在卵母细胞子午线上垂直于流动方向,一个在远离细胞外溶液流动方向的下游,发现下游电极具有更大的(即更慢的)τpHS,表明卵母细胞表面的[CO2]不对称。反应-扩散数学模型(系列中的第三篇论文)解释了上述一般特征,并支持了以下结论:细胞外 CA 在细胞外表面补充进入的 CO2 或消耗离开的 CO2,增强了跨细胞膜的 CO2 流入梯度驱动。