Suppr超能文献

数学模型表明碳酸酐酶 II 和 IV 可增强 Xenopus 卵母细胞质膜的 CO2 通量。

Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes.

机构信息

Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio;

Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; Department of Physiology and Biophysics, University of Sao Paulo, Institute of Biomedical Sciences, Sao Paulo, Brazil.

出版信息

Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C841-58. doi: 10.1152/ajpcell.00049.2014. Epub 2014 Jun 25.

Abstract

Exposing an oocyte to CO2/HCO3 (-) causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3 (-) solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3 (-) (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3 (-) or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive.

摘要

将卵母细胞暴露于 CO2/HCO3 (-) 会导致细胞内 pH (pHi) 下降和细胞外表面 pH (pHS) 上升至峰值并衰减。两篇相关论文表明,注射胞质碳酸酐酶 II (CA II) 或表达表面 CA IV 的卵母细胞表现出更高的最大 pHi 变化率 (dpHi/dt)max、更大的最大 pHS 变化 (ΔpHS) 以及更低的 pHi 下降和 pHS 衰减时间常数。在这里,我们使用先前关于 CO2 流入球形细胞的数学模型的改进版本来研究这些结果。改进包括 1) 降低胞质含水量,2) 降低胞质扩散常数,3) 改进 CA II 活性,4) 细胞内囊泡层,5) 降低膜 CO2 通透性,6) 微绒毛,7) 改进 CA IV 活性,8) 卵黄膜,以及 9) 一种新的模拟方案,用于输送和去除大量细胞外 CO2/HCO3 (-) 溶液。我们展示了这些特征如何影响模拟的 pHi 和 pHS 瞬变,并使用带有 1.5% CO2/10 mM HCO3 (-) (pHo = 7.5) 的实验数据的改进模型来找到近似 ΔpHS、pHS 峰值时间、pHi 变化开始的时间延迟、(dpHi/dt)max 以及稳态 pHi 变化的参数值。我们根据我们改变 CO2/HCO3 (-) 或细胞外 HEPES 缓冲液水平时收集的数据来验证修正模型。该模型证实了 CA II 和 CA IV 通过最大化质膜两侧的 CO2 梯度来增强跨膜 CO2 通量的假设,并预测同时实施细胞内和细胞外表面 CA 的 pH 效应是超加性的。

相似文献

1
Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes.
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C841-58. doi: 10.1152/ajpcell.00049.2014. Epub 2014 Jun 25.
2
Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes.
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C814-40. doi: 10.1152/ajpcell.00050.2014. Epub 2014 Jun 25.
3
Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes.
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C791-813. doi: 10.1152/ajpcell.00051.2014. Epub 2014 Jun 25.
5
Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes.
Am J Physiol. 1998 Feb;274(2):C543-8. doi: 10.1152/ajpcell.1998.274.2.C543.
6
Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres.
J Physiol. 2001 Mar 15;531(Pt 3):743-56. doi: 10.1111/j.1469-7793.2001.0743h.x.
7
A reaction-diffusion model of CO2 influx into an oocyte.
J Theor Biol. 2012 Sep 21;309:185-203. doi: 10.1016/j.jtbi.2012.06.016. Epub 2012 Jun 20.
8
Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO/HCO fluctuations.
J Cereb Blood Flow Metab. 2018 Mar;38(3):492-505. doi: 10.1177/0271678X17699224. Epub 2017 Mar 20.

引用本文的文献

1
Effects of extracellular metabolic acidosis on the homeostasis of intracellular pH in hippocampal neurons.
Front Physiol. 2025 Mar 14;15:1494956. doi: 10.3389/fphys.2024.1494956. eCollection 2024.
2
Mechanism of CO and NH Transport through Human Aquaporin 1: Evidence for Parallel CO Pathways.
bioRxiv. 2025 Jun 23:2025.02.28.640247. doi: 10.1101/2025.02.28.640247.
3
Potential Novel Role of Membrane-Associated Carbonic Anhydrases in the Kidney.
Int J Mol Sci. 2023 Feb 20;24(4):4251. doi: 10.3390/ijms24044251.
4
Carbonic anhydrase and soluble adenylate cyclase regulation of cystic fibrosis cellular phenotypes.
Am J Physiol Lung Cell Mol Physiol. 2022 Mar 1;322(3):L333-L347. doi: 10.1152/ajplung.00022.2021. Epub 2022 Jan 5.
5
Computational modeling predicts ephemeral acidic microdomains in the glutamatergic synaptic cleft.
Biophys J. 2021 Dec 21;120(24):5575-5591. doi: 10.1016/j.bpj.2021.11.011. Epub 2021 Nov 11.
6
Computational model of electrode-induced microenvironmental effects on pH measurements near a cell membrane.
Multiscale Model Simul. 2020;18(2):1053-1075. doi: 10.1137/19m1262875. Epub 2020 May 28.
7
Carbon dioxide transport across membranes.
Interface Focus. 2021 Apr 6;11(2):20200090. doi: 10.1098/rsfs.2020.0090. Epub 2021 Feb 12.
10
CO₂ Permeability of Biological Membranes and Role of CO₂ Channels.
Membranes (Basel). 2017 Oct 24;7(4):61. doi: 10.3390/membranes7040061.

本文引用的文献

1
Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes.
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C814-40. doi: 10.1152/ajpcell.00050.2014. Epub 2014 Jun 25.
3
Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes.
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C791-813. doi: 10.1152/ajpcell.00051.2014. Epub 2014 Jun 25.
4
GPI-anchored carbonic anhydrase IV displays both intra- and extracellular activity in cRNA-injected oocytes and in mouse neurons.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1494-9. doi: 10.1073/pnas.1221213110. Epub 2013 Jan 7.
5
A reaction-diffusion model of CO2 influx into an oocyte.
J Theor Biol. 2012 Sep 21;309:185-203. doi: 10.1016/j.jtbi.2012.06.016. Epub 2012 Jun 20.
6
Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels.
Chemphyschem. 2011 Apr 4;12(5):1017-9. doi: 10.1002/cphc.201100034. Epub 2011 Mar 7.
7
Sharpey-Schafer lecture: gas channels.
Exp Physiol. 2010 Dec;95(12):1107-30. doi: 10.1113/expphysiol.2010.055244. Epub 2010 Sep 17.
8
The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths.
J Biol Chem. 2009 Jul 24;284(30):20299-310. doi: 10.1074/jbc.M109.006478. Epub 2009 May 19.
10
Diffusion in brain extracellular space.
Physiol Rev. 2008 Oct;88(4):1277-340. doi: 10.1152/physrev.00027.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验