Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio;
Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; Department of Physiology and Biophysics, University of Sao Paulo, Institute of Biomedical Sciences, Sao Paulo, Brazil.
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C841-58. doi: 10.1152/ajpcell.00049.2014. Epub 2014 Jun 25.
Exposing an oocyte to CO2/HCO3 (-) causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3 (-) solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3 (-) (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3 (-) or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive.
将卵母细胞暴露于 CO2/HCO3 (-) 会导致细胞内 pH (pHi) 下降和细胞外表面 pH (pHS) 上升至峰值并衰减。两篇相关论文表明,注射胞质碳酸酐酶 II (CA II) 或表达表面 CA IV 的卵母细胞表现出更高的最大 pHi 变化率 (dpHi/dt)max、更大的最大 pHS 变化 (ΔpHS) 以及更低的 pHi 下降和 pHS 衰减时间常数。在这里,我们使用先前关于 CO2 流入球形细胞的数学模型的改进版本来研究这些结果。改进包括 1) 降低胞质含水量,2) 降低胞质扩散常数,3) 改进 CA II 活性,4) 细胞内囊泡层,5) 降低膜 CO2 通透性,6) 微绒毛,7) 改进 CA IV 活性,8) 卵黄膜,以及 9) 一种新的模拟方案,用于输送和去除大量细胞外 CO2/HCO3 (-) 溶液。我们展示了这些特征如何影响模拟的 pHi 和 pHS 瞬变,并使用带有 1.5% CO2/10 mM HCO3 (-) (pHo = 7.5) 的实验数据的改进模型来找到近似 ΔpHS、pHS 峰值时间、pHi 变化开始的时间延迟、(dpHi/dt)max 以及稳态 pHi 变化的参数值。我们根据我们改变 CO2/HCO3 (-) 或细胞外 HEPES 缓冲液水平时收集的数据来验证修正模型。该模型证实了 CA II 和 CA IV 通过最大化质膜两侧的 CO2 梯度来增强跨膜 CO2 通量的假设,并预测同时实施细胞内和细胞外表面 CA 的 pH 效应是超加性的。