Suppr超能文献

聚酮合酶模块的结构:冷冻电镜带来的惊喜

Architecture of the polyketide synthase module: surprises from electron cryo-microscopy.

作者信息

Smith Janet L, Skiniotis Georgios, Sherman David H

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Curr Opin Struct Biol. 2015 Apr;31:9-19. doi: 10.1016/j.sbi.2015.02.014. Epub 2015 Mar 16.

Abstract

Modular polyketide synthases (PKS) produce a vast array of bioactive molecules that are the basis of many highly valued pharmaceuticals. The biosynthesis of these compounds is based on ordered assembly lines of multi-domain modules, each extending and modifying a specific chain-elongation intermediate before transfer to the next module for further processing. The first 3D structures of a full polyketide synthase module in different functional states were obtained recently by electron cryo-microscopy. The unexpected module architecture revealed a striking evolutionary divergence of the polyketide synthase compared to its metazoan fatty acid synthase homolog, as well as remarkable conformational rearrangements dependent on its biochemical state during the full catalytic cycle. The design and dynamics of the module are highly optimized for both catalysis and fidelity in the construction of complex, biologically active natural products.

摘要

模块化聚酮合酶(PKS)可产生大量生物活性分子,这些分子是许多高价值药物的基础。这些化合物的生物合成基于多结构域模块的有序装配线,每个模块在将特定的链延伸中间体转移到下一个模块进行进一步加工之前,都会对其进行延伸和修饰。最近,通过电子冷冻显微镜获得了处于不同功能状态的完整聚酮合酶模块的首批三维结构。意外的模块结构揭示了聚酮合酶与其后生动物脂肪酸合酶同源物相比存在显著的进化差异,以及在整个催化循环中依赖于其生化状态的显著构象重排。该模块的设计和动力学在催化和构建复杂的生物活性天然产物时的保真度方面都进行了高度优化。

相似文献

1
Architecture of the polyketide synthase module: surprises from electron cryo-microscopy.
Curr Opin Struct Biol. 2015 Apr;31:9-19. doi: 10.1016/j.sbi.2015.02.014. Epub 2015 Mar 16.
2
Structural rearrangements of a polyketide synthase module during its catalytic cycle.
Nature. 2014 Jun 26;510(7506):560-4. doi: 10.1038/nature13409. Epub 2014 Jun 18.
4
Structure of a modular polyketide synthase.
Nature. 2014 Jun 26;510(7506):512-7. doi: 10.1038/nature13423. Epub 2014 Jun 18.
5
Reconstituting modular activity from separated domains of 6-deoxyerythronolide B synthase.
Biochemistry. 2004 Nov 9;43(44):13892-8. doi: 10.1021/bi048418n.
6
Covalent linkage mediates communication between ACP and TE domains in modular polyketide synthases.
Chembiochem. 2008 Apr 14;9(6):905-15. doi: 10.1002/cbic.200700738.
7
Trapping of a Polyketide Synthase Module after C-C Bond Formation Reveals Transient Acyl Carrier Domain Interactions.
Angew Chem Int Ed Engl. 2024 Feb 26;63(9):e202315850. doi: 10.1002/anie.202315850. Epub 2024 Jan 17.
8
Combinatorialization of fungal polyketide synthase-peptide synthetase hybrid proteins.
J Am Chem Soc. 2014 Dec 24;136(51):17882-90. doi: 10.1021/ja511087p. Epub 2014 Dec 8.
9
Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4110-5. doi: 10.1073/pnas.1118734109. Epub 2012 Feb 27.
10
Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22066-71. doi: 10.1073/pnas.1014081107. Epub 2010 Dec 2.

引用本文的文献

2
More than a colour; how pigment influences colourblind microbes.
Philos Trans R Soc Lond B Biol Sci. 2024 May 6;379(1901):20230077. doi: 10.1098/rstb.2023.0077. Epub 2024 Mar 18.
4
Discovery and Characterization of Antibody Probes of Module 2 of the 6-Deoxyerythronolide B Synthase.
Biochemistry. 2023 Jun 6;62(11):1589-1593. doi: 10.1021/acs.biochem.3c00156. Epub 2023 May 15.
5
From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf.
Chem Rev. 2023 May 10;123(9):5421-5458. doi: 10.1021/acs.chemrev.2c00397. Epub 2022 Dec 27.
6
Solution structure of the type I polyketide synthase Pks13 from Mycobacterium tuberculosis.
BMC Biol. 2022 Jun 21;20(1):147. doi: 10.1186/s12915-022-01337-9.
7
Recent trends in biocatalysis.
Chem Soc Rev. 2021 Jul 21;50(14):8003-8049. doi: 10.1039/d0cs01575j. Epub 2021 Jun 18.
9
Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases.
Synth Syst Biotechnol. 2020 May 13;5(2):62-80. doi: 10.1016/j.synbio.2020.04.001. eCollection 2020 Jun.

本文引用的文献

3
Cryo-EM enters a new era.
Elife. 2014 Aug 13;3:e03678. doi: 10.7554/eLife.03678.
4
Three-dimensional structure of human γ-secretase.
Nature. 2014 Aug 14;512(7513):166-170. doi: 10.1038/nature13567. Epub 2014 Jun 29.
5
6
Structural rearrangements of a polyketide synthase module during its catalytic cycle.
Nature. 2014 Jun 26;510(7506):560-4. doi: 10.1038/nature13409. Epub 2014 Jun 18.
7
Structure of a modular polyketide synthase.
Nature. 2014 Jun 26;510(7506):512-7. doi: 10.1038/nature13423. Epub 2014 Jun 18.
8
Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform.
Curr Opin Biotechnol. 2014 Dec;30:32-9. doi: 10.1016/j.copbio.2014.04.011. Epub 2014 May 6.
9
Assembly line polyketide synthases: mechanistic insights and unsolved problems.
Biochemistry. 2014 May 13;53(18):2875-83. doi: 10.1021/bi500290t. Epub 2014 May 1.
10
Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase.
J Mol Biol. 2014 May 29;426(11):2229-45. doi: 10.1016/j.jmb.2014.03.015. Epub 2014 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验