Suppr超能文献

使用PET-CT和MR进行基于分割的PET衰减校正的偏差图谱。

Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR.

作者信息

Ouyang Jinsong, Chun Se Young, Petibon Yoann, Bonab Ali A, Alpert Nathaniel, Fakhri Georges El

机构信息

Center for Advanced Radiological Sciences, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston; Harvard Medical School, Boston.

Massachusetts General Hospital and Harvard Medical School, Boston. He is now with School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea.

出版信息

IEEE Trans Nucl Sci. 2013 Oct 1;60(5):3373-3382. doi: 10.1109/TNS.2013.2278624.

Abstract

This study was to obtain voxel-wise PET accuracy and precision using tissue-segmentation for attenuation correction. We applied multiple thresholds to the CTs of 23 patients to classify tissues. For six of the 23 patients, MR images were also acquired. The MR fat/in-phase ratio images were used for fat segmentation. Segmented tissue classes were used to create attenuation maps, which were used for attenuation correction in PET reconstruction. PET bias images were then computed using the PET reconstructed with the original CT as the reference. We registered the CTs for all the patients and transformed the corresponding bias images accordingly. We then obtained the mean and standard deviation bias atlas using all the registered bias images. Our CT-based study shows that four-class segmentation (air, lungs, fat, other tissues), which is available on most PET-MR scanners, yields 15.1%, 4.1%, 6.6%, and 12.9% RMSE bias in lungs, fat, non-fat soft-tissues, and bones, respectively. An accurate fat identification is achievable using fat/in-phase MR images. Furthermore, we have found that three-class segmentation (air, lungs, other tissues) yields less than 5% standard deviation of bias within the heart, liver, and kidneys. This implies that three-class segmentation can be sufficient to achieve small variation of bias for imaging these three organs. Finally, we have found that inter- and intra-patient lung density variations contribute almost equally to the overall standard deviation of bias within the lungs.

摘要

本研究旨在通过组织分割进行衰减校正,以获得体素级PET的准确性和精确性。我们对23例患者的CT应用多个阈值来对组织进行分类。在这23例患者中,有6例还采集了MR图像。MR脂肪/同相比率图像用于脂肪分割。分割后的组织类别用于创建衰减图,该衰减图用于PET重建中的衰减校正。然后,以原始CT重建的PET作为参考来计算PET偏差图像。我们对所有患者的CT进行配准,并相应地变换对应的偏差图像。然后,我们使用所有配准后的偏差图像获得平均偏差图谱和标准偏差图谱。我们基于CT的研究表明,大多数PET-MR扫描仪上可用的四类分割(空气、肺、脂肪、其他组织)在肺、脂肪、非脂肪软组织和骨骼中的RMSE偏差分别为15.1%、4.1%、6.6%和12.9%。使用脂肪/同相MR图像可以实现准确的脂肪识别。此外,我们发现三类分割(空气、肺、其他组织)在心脏、肝脏和肾脏内的偏差标准偏差小于5%。这意味着三类分割足以实现对这三个器官成像时偏差的小变化。最后,我们发现患者间和患者内的肺密度变化对肺内偏差的总体标准偏差贡献几乎相同。

相似文献

1
Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR.
IEEE Trans Nucl Sci. 2013 Oct 1;60(5):3373-3382. doi: 10.1109/TNS.2013.2278624.
2
Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.
Neuroimage. 2016 Apr 15;130:123-133. doi: 10.1016/j.neuroimage.2016.01.060. Epub 2016 Feb 4.
4
Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.
J Nucl Med. 2015 Apr;56(4):635-41. doi: 10.2967/jnumed.114.148817. Epub 2015 Mar 5.
8
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.
9
Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone.
Neuroimage. 2014 Jan 1;84:206-16. doi: 10.1016/j.neuroimage.2013.08.042. Epub 2013 Aug 29.

引用本文的文献

1
DUAL PROMPTING FOR DIVERSE COUNT-LEVEL PET DENOISING.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980695. Epub 2025 May 12.
2
Dual Prompting for Diverse Count-level PET Denoising.
ArXiv. 2025 May 5:arXiv:2505.03037v1.
3
IE-CycleGAN: improved cycle consistent adversarial network for unpaired PET image enhancement.
Eur J Nucl Med Mol Imaging. 2024 Nov;51(13):3874-3887. doi: 10.1007/s00259-024-06823-6. Epub 2024 Jul 23.
4
Cross noise level PET denoising with continuous adversarial domain generalization.
Phys Med Biol. 2024 Apr 3;69(8). doi: 10.1088/1361-6560/ad341a.
5
Machine Learning in PET: from Photon Detection to Quantitative Image Reconstruction.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):51-68. doi: 10.1109/JPROC.2019.2936809. Epub 2019 Sep 19.
6
A review of PET attenuation correction methods for PET-MR.
EJNMMI Phys. 2023 Sep 11;10(1):52. doi: 10.1186/s40658-023-00569-0.
9
MR-based PET attenuation correction using a combined ultrashort echo time/multi-echo Dixon acquisition.
Med Phys. 2020 Jul;47(7):3064-3077. doi: 10.1002/mp.14180. Epub 2020 May 11.
10
PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques.
Med Phys. 2020 Feb;47(2):790-811. doi: 10.1002/mp.13943. Epub 2020 Jan 1.

本文引用的文献

2
Evaluation of an attenuation correction method for PET/MR imaging of the head based on substitute CT images.
MAGMA. 2013 Feb;26(1):127-36. doi: 10.1007/s10334-012-0339-2. Epub 2012 Sep 7.
3
Challenges and current methods for attenuation correction in PET/MR.
MAGMA. 2013 Feb;26(1):81-98. doi: 10.1007/s10334-012-0334-7. Epub 2012 Aug 9.
4
Voxel-wise uncertainty in CT substitute derived from MRI.
Med Phys. 2012 Jun;39(6):3283-90. doi: 10.1118/1.4711807.
5
Variable lung density consideration in attenuation correction of whole-body PET/MRI.
J Nucl Med. 2012 Jun;53(6):977-84. doi: 10.2967/jnumed.111.098350. Epub 2012 May 7.
6
First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses.
J Nucl Med. 2012 Jun;53(6):845-55. doi: 10.2967/jnumed.111.098608. Epub 2012 Apr 25.
7
PET/MR imaging of bone lesions--implications for PET quantification from imperfect attenuation correction.
Eur J Nucl Med Mol Imaging. 2012 Jul;39(7):1154-60. doi: 10.1007/s00259-012-2113-0. Epub 2012 Apr 14.
9
The effect of errors in segmented attenuation maps on PET quantification.
Med Phys. 2011 Nov;38(11):6010-9. doi: 10.1118/1.3651640.
10
MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods.
J Nucl Med. 2011 Sep;52(9):1392-9. doi: 10.2967/jnumed.110.078949. Epub 2011 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验