Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America.
Department of Radiology, Harvard Medical School, Boston, MA 02115, United States of America.
Phys Med Biol. 2024 Apr 3;69(8). doi: 10.1088/1361-6560/ad341a.
Performing positron emission tomography (PET) denoising within the image space proves effective in reducing the variance in PET images. In recent years, deep learning has demonstrated superior denoising performance, but models trained on a specific noise level typically fail to generalize well on different noise levels, due to inherent distribution shifts between inputs. The distribution shift usually results in bias in the denoised images. Our goal is to tackle such a problem using a domain generalization technique.We propose to utilize the domain generalization technique with a novel feature space continuous discriminator (CD) for adversarial training, using the fraction of events as a continuous domain label. The core idea is to enforce the extraction of noise-level invariant features. Thus minimizing the distribution divergence of latent feature representation for different continuous noise levels, and making the model general for arbitrary noise levels. We created three sets of 10%, 13%-22% (uniformly randomly selected), or 25% fractions of events from 97F-MK6240 tau PET studies of 60 subjects. For each set, we generated 20 noise realizations. Training, validation, and testing were implemented using 1400, 120, and 420 pairs of 3D image volumes from the same or different sets. We used 3D UNet as the baseline and implemented CD to the continuous noise level training data of 13%-22% set.The proposed CD improves the denoising performance of our model trained in a 13%-22% fraction set for testing in both 10% and 25% fraction sets, measured by bias and standard deviation using full-count images as references. In addition, our CD method can improve the SSIM and PSNR consistently for Alzheimer-related regions and the whole brain.To our knowledge, this is the first attempt to alleviate the performance degradation in cross-noise level denoising from the perspective of domain generalization. Our study is also a pioneer work of continuous domain generalization to utilize continuously changing source domains.
在图像空间中进行正电子发射断层扫描(PET)去噪在降低 PET 图像方差方面证明是有效的。近年来,深度学习在去噪方面表现出了优越的性能,但在特定噪声水平上训练的模型通常无法很好地推广到不同的噪声水平,因为输入之间存在固有的分布偏移。这种分布偏移通常会导致去噪图像出现偏差。我们的目标是使用域泛化技术来解决这个问题。
我们提出利用具有新颖特征空间连续鉴别器(CD)的域泛化技术进行对抗训练,使用事件分数作为连续的域标签。核心思想是强制提取噪声水平不变的特征。从而最小化不同连续噪声水平下潜在特征表示的分布差异,使模型对任意噪声水平都具有通用性。
我们从 60 名受试者的 97F-MK6240tau PET 研究中创建了三组 10%、13%-22%(均匀随机选择)或 25%的事件分数。对于每组,我们生成了 20 个噪声实现。使用来自同一组或不同组的 3D 图像体积的 1400、120 和 420 对 3D UNet 作为基线,将 CD 实现到 13%-22%组的连续噪声水平训练数据中。
所提出的 CD 提高了在 13%-22%分数组中训练的模型在 10%和 25%分数组中的测试去噪性能,以全计数图像作为参考,使用偏差和标准差进行测量。此外,我们的 CD 方法可以持续提高与阿尔茨海默病相关区域和整个大脑的 SSIM 和 PSNR。
据我们所知,这是首次从域泛化的角度尝试减轻跨噪声水平去噪的性能下降。我们的研究也是连续域泛化利用连续变化的源域的先驱工作。