IEEE Trans Image Process. 2014 Sep;23(9):3789-801. doi: 10.1109/TIP.2014.2332398. Epub 2014 Jun 23.
Distance metric learning (DML) is a critical factor for image analysis and pattern recognition. To learn a robust distance metric for a target task, we need abundant side information (i.e., the similarity/dissimilarity pairwise constraints over the labeled data), which is usually unavailable in practice due to the high labeling cost. This paper considers the transfer learning setting by exploiting the large quantity of side information from certain related, but different source tasks to help with target metric learning (with only a little side information). The state-of-the-art metric learning algorithms usually fail in this setting because the data distributions of the source task and target task are often quite different. We address this problem by assuming that the target distance metric lies in the space spanned by the eigenvectors of the source metrics (or other randomly generated bases). The target metric is represented as a combination of the base metrics, which are computed using the decomposed components of the source metrics (or simply a set of random bases); we call the proposed method, decomposition-based transfer DML (DTDML). In particular, DTDML learns a sparse combination of the base metrics to construct the target metric by forcing the target metric to be close to an integration of the source metrics. The main advantage of the proposed method compared with existing transfer metric learning approaches is that we directly learn the base metric coefficients instead of the target metric. To this end, far fewer variables need to be learned. We therefore obtain more reliable solutions given the limited side information and the optimization tends to be faster. Experiments on the popular handwritten image (digit, letter) classification and challenge natural image annotation tasks demonstrate the effectiveness of the proposed method.
距离度量学习(DML)是图像分析和模式识别的关键因素。为了学习针对目标任务的鲁棒距离度量,我们需要大量的辅助信息(即,标记数据上的相似性/相异性成对约束),但由于标记成本高,在实践中通常无法获得这些信息。本文通过利用来自某些相关但不同源任务的大量辅助信息来考虑迁移学习设置,以帮助目标度量学习(只有少量辅助信息)。由于源任务和目标任务的数据分布通常有很大的不同,因此最先进的度量学习算法在这种情况下通常会失败。我们通过假设目标距离度量位于源度量的特征向量(或其他随机生成的基)所张成的空间中来解决这个问题。目标度量表示为基度量的组合,这些基度量是使用源度量的分解分量(或简单地使用一组随机基)计算的;我们将所提出的方法称为基于分解的迁移 DML(DTDML)。具体来说,DTDML 通过迫使目标度量接近源度量的集成来学习基度量的稀疏组合来构建目标度量。与现有的迁移度量学习方法相比,所提出的方法的主要优势在于我们直接学习基度量系数,而不是目标度量。为此,需要学习的变量要少得多。因此,在有限的辅助信息和优化的情况下,我们可以获得更可靠的解决方案,并且优化往往更快。在流行的手写图像(数字、字母)分类和挑战自然图像标注任务上的实验证明了所提出方法的有效性。