Guo Yun-Nan, Ungur Liviu, Granroth Garrett E, Powell Annie K, Wu Chunji, Nagler Stephen E, Tang Jinkui, Chibotaru Liviu F, Cui Dongmei
1] State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China [2] School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
Theory of Nanomaterials Group, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
Sci Rep. 2014 Jun 27;4:5471. doi: 10.1038/srep05471.
Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion. The essentially C2v symmetry of the Dy(III) ion results in a new relaxation mechanism, hitherto unknown for mononuclear Dy(III) complexes, opening new perspectives for means of enhancing the anisotropy contribution to the spin-relaxation barrier.
单分子磁体是一类纯粹源于分子层面展现出磁双稳态的化合物。控制各向异性并抑制量子隧穿,以全面了解弛豫路径多样性,对于减缓单分子磁体内的弛豫动力学以促进其潜在应用这一最终目标而言至关重要。结合从头算计算和详细的磁化动力学研究表明,在一个新的DyNCN体系中,存在通过第二激发态介导的前所未有的弛豫现象,该体系包含一个与单个镝(III)离子配位的价态局域化碳。Dy(III)离子基本的C2v对称性导致了一种新的弛豫机制,这在单核Dy(III)配合物中是前所未知的,为增强各向异性对自旋弛豫势垒的贡献开辟了新的途径。