Bandarabadi Mojtaba, Teixeira César A, Rasekhi Jalil, Dourado António
CISUC/DEI, Center for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Polo II, 3030-290 Coimbra, Portugal.
CISUC/DEI, Center for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Polo II, 3030-290 Coimbra, Portugal.
Clin Neurophysiol. 2015 Feb;126(2):237-48. doi: 10.1016/j.clinph.2014.05.022. Epub 2014 Jun 4.
Prediction of epileptic seizures can improve the living conditions for refractory epilepsy patients. We aimed to improve sensitivity and specificity of prediction methods, and to reduce the number of false alarms.
Relative combinations of sub-band spectral powers of electroencephalogram (EEG) recordings across all possible channel pairs were utilized for tracking gradual changes preceding seizures. By using a specifically developed feature selection method, a set of best candidate features were fed to support vector machines in order to discriminate cerebral state as preictal or non-preictal.
Proposed algorithm was evaluated on continuous long-term multichannel scalp and invasive recordings (183 seizures, 3565 h). The best results demonstrated a sensitivity of 75.8% (66 out of 87 seizures) and a false prediction rate of 0.1h(-1). Performance was validated statistically, and was superior to that of analytical random predictor.
Applying machine learning methods on a reduced subset of proposed features could predict seizure onsets with high performance.
Our method was evaluated on long-term continuous recordings of overall about 5 months, contrary to majority of previous studies using short-term fragmented data. It is of very low computational cost, while providing acceptable levels of alarm sensitivity and specificity.
癫痫发作的预测可改善难治性癫痫患者的生活状况。我们旨在提高预测方法的敏感性和特异性,并减少误报次数。
利用所有可能通道对的脑电图(EEG)记录的子带频谱功率的相对组合来跟踪发作前的逐渐变化。通过使用专门开发的特征选择方法,将一组最佳候选特征输入支持向量机,以区分脑状态是发作前还是非发作前。
在连续长期多通道头皮和侵入性记录(183次发作,3565小时)上对提出的算法进行了评估。最佳结果显示敏感性为75.8%(87次发作中的66次),误预测率为0.1小时-1。性能经过统计学验证,优于分析随机预测器。
在提出的特征的简化子集中应用机器学习方法可以高性能地预测癫痫发作的开始。
与大多数先前使用短期碎片化数据的研究相反,我们的方法在总体约5个月的长期连续记录上进行了评估。它的计算成本非常低,同时提供可接受的警报敏感性和特异性水平。