Suppr超能文献

基于 EEG 信号的长短期记忆深度学习网络预测癫痫发作。

A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals.

机构信息

Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, GR15773, Athens, Greece; Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, GR45110, Ioannina, Greece.

Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, GR45110, Ioannina, Greece.

出版信息

Comput Biol Med. 2018 Aug 1;99:24-37. doi: 10.1016/j.compbiomed.2018.05.019. Epub 2018 May 17.

Abstract

The electroencephalogram (EEG) is the most prominent means to study epilepsy and capture changes in electrical brain activity that could declare an imminent seizure. In this work, Long Short-Term Memory (LSTM) networks are introduced in epileptic seizure prediction using EEG signals, expanding the use of deep learning algorithms with convolutional neural networks (CNN). A pre-analysis is initially performed to find the optimal architecture of the LSTM network by testing several modules and layers of memory units. Based on these results, a two-layer LSTM network is selected to evaluate seizure prediction performance using four different lengths of preictal windows, ranging from 15 min to 2 h. The LSTM model exploits a wide range of features extracted prior to classification, including time and frequency domain features, between EEG channels cross-correlation and graph theoretic features. The evaluation is performed using long-term EEG recordings from the open CHB-MIT Scalp EEG database, suggest that the proposed methodology is able to predict all 185 seizures, providing high rates of seizure prediction sensitivity and low false prediction rates (FPR) of 0.11-0.02 false alarms per hour, depending on the duration of the preictal window. The proposed LSTM-based methodology delivers a significant increase in seizure prediction performance compared to both traditional machine learning techniques and convolutional neural networks that have been previously evaluated in the literature.

摘要

脑电图(EEG)是研究癫痫的最主要手段,可捕捉到可能预示即将发生癫痫发作的大脑电活动变化。在这项工作中,使用脑电图信号引入长短时记忆(LSTM)网络进行癫痫发作预测,扩展了使用卷积神经网络(CNN)的深度学习算法的应用。首先进行了预分析,通过测试几个记忆单元模块和层,找到 LSTM 网络的最佳架构。基于这些结果,选择了一个两层的 LSTM 网络,使用四个不同的前癫痫窗口长度(从 15 分钟到 2 小时)评估癫痫发作预测性能。LSTM 模型利用了在分类之前提取的广泛的特征,包括时域和频域特征、EEG 通道之间的互相关和图论特征。使用来自公开的 CHB-MIT 头皮 EEG 数据库的长期 EEG 记录进行评估表明,所提出的方法能够预测所有 185 次癫痫发作,提供了高的癫痫发作预测灵敏度和低的假阳性率(FPR),在 0.11-0.02 次/小时的假警报率范围内,具体取决于前癫痫窗口的持续时间。与文献中之前评估的传统机器学习技术和卷积神经网络相比,基于 LSTM 的方法显著提高了癫痫发作预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验