Dept. of Cognitive Biology, University of Vienna, 14 Althanstrasse, Vienna, Austria.
Phys Life Rev. 2014 Sep;11(3):329-64. doi: 10.1016/j.plrev.2014.04.005. Epub 2014 May 13.
Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a neurally-grounded framework for theoretical cognitive science is within reach that can move beyond polarized debates and provide a more adequate theoretical future for cognitive biology.
理解认知的进展需要一个定量的、理论框架,该框架建立在其他自然科学的基础上,能够在实施、算法和计算解释层面之间架起桥梁。我回顾了神经科学和认知生物学的最新研究成果,这些成果结合在一起,为当代认知科学提供了这种改进的概念框架的关键组成部分。从神经元水平开始,我首先讨论了当代的一个认识,即单个神经元是强大的树状计算机,这意味着学习和可塑性的计算模型需要向更低的细胞水平重新定位。然后我转向预测系统理论(预测编码和基于预测的学习),它为理解大脑功能提供了一个强大的形式框架在更全局的层面上。尽管大多数关于预测编码的形式模型都是以联想的术语来构建的,但我认为,现代数据需要以认知术语重新解释这些模型:作为基于模型的预测系统。最后,我回顾了计算理论和形式语言理论在最近比较生物学研究中的作用,这些研究试图分离和探索不同物种在认知能力上的差异。迄今为止的实验强烈表明,人类和大多数其他物种之间存在着重要的差异,从认知的角度来看,最好的特征是我们物种有一种从序列数据中推断树结构的倾向。从计算的角度来看,这种能力需要超越规则(有限状态)水平的生成能力;从实现的角度来看,它需要某种类似于下推栈的神经等价物。我将这种人类特有的不寻常倾向称为“树癖”,并就如何以及为什么它会在人类大脑中实现、它是如何进化的以及这对语言习得模型意味着什么等问题提出了一些具体建议。我得出的结论是,尽管还有很多工作要做,但一个基于神经科学的理论认知科学框架是可以实现的,它可以超越两极分化的争论,为认知生物学提供一个更充分的理论未来。