Feeney Amanda, Nilsson Eric, Skinner Michael K
School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA.
School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
Reproduction. 2014 Sep;148(3):321-31. doi: 10.1530/REP-14-0246. Epub 2014 Jun 26.
An ovarian follicle is composed of an oocyte and surrounding theca and granulosa cells. Oocytes are stored in an arrested state within primordial follicles until they are signaled to re-initiate development by undergoing primordial-to-primary follicle transition. Previous gene bionetwork analyses of primordial follicle development identified a number of critical cytokine signaling pathways and genes potentially involved in the process. In the current study, candidate regulatory genes and pathways from the gene network analyses were tested for their effects on the formation of primordial follicles (follicle assembly) and on primordial follicle transition using whole ovary organ culture experiments. Observations indicate that the tyrphostin inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased follicle assembly significantly, supporting a role for the MAPK signaling pathway in follicle assembly. The cytokine interleukin 16 (IL16) promotes primordial-to-primary follicle transition as compared with the controls, where as Delta-like ligand 4 (DLL4) and WNT-3A treatments have no effect. Immunohistochemical experiments demonstrated the localization of both the cytokine IL16 and its receptor CD4 in the granulosa cells surrounding each oocyte within the ovarian follicle. The tyrphostin LDN193189 (LDN) is an inhibitor of the bone morphogenic protein receptor 1 within the TGFB signaling pathway and was found to promote the primordial-to-primary follicle transition. Observations support the importance of cytokines (i.e., IL16) and cytokine signaling pathways in the regulation of early follicle development. Insights into regulatory factors affecting early primordial follicle development are provided that may associate with ovarian disease and translate to improved therapy in the future.
卵巢卵泡由一个卵母细胞以及周围的卵泡膜细胞和颗粒细胞组成。卵母细胞以静止状态储存在原始卵泡中,直到它们接收到信号,通过经历从原始卵泡到初级卵泡的转变重新开始发育。先前对原始卵泡发育的基因生物网络分析确定了一些可能参与该过程的关键细胞因子信号通路和基因。在本研究中,利用全卵巢器官培养实验,对基因网络分析中的候选调控基因和通路在原始卵泡形成(卵泡组装)和原始卵泡转变方面的作用进行了测试。观察结果表明,酪氨酸磷酸化抑制剂(E)-2-亚苄基-3-(环己基氨基)-2,3-二氢-1H-茚-1-酮显著增加了卵泡组装,支持丝裂原活化蛋白激酶(MAPK)信号通路在卵泡组装中的作用。与对照组相比,细胞因子白细胞介素16(IL16)促进了原始卵泡到初级卵泡的转变,而Delta样配体4(DLL4)和WNT-3A处理则没有效果。免疫组织化学实验证明了细胞因子IL16及其受体CD4在卵巢卵泡内每个卵母细胞周围的颗粒细胞中的定位。酪氨酸磷酸化抑制剂LDN193189(LDN)是转化生长因子β(TGFB)信号通路中骨形态发生蛋白受体1的抑制剂,发现它能促进原始卵泡到初级卵泡的转变。这些观察结果支持细胞因子(如IL16)和细胞因子信号通路在早期卵泡发育调控中的重要性。本研究提供了对影响早期原始卵泡发育的调控因子的见解,这些见解可能与卵巢疾病相关,并有望在未来转化为更好的治疗方法。