Suppr超能文献

原子力显微镜揭示了天然人类半月板细胞外基质纳米力学特性的年龄依赖性变化:对关节退变和骨关节炎的影响。

Atomic force microscopy reveals age-dependent changes in nanomechanical properties of the extracellular matrix of native human menisci: implications for joint degeneration and osteoarthritis.

作者信息

Kwok Jeanie, Grogan Shawn, Meckes Brian, Arce Fernando, Lal Ratnesh, D'Lima Darryl

机构信息

Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA; Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA.

Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA.

出版信息

Nanomedicine. 2014 Nov;10(8):1777-85. doi: 10.1016/j.nano.2014.06.010. Epub 2014 Jun 25.

Abstract

UNLABELLED

With aging, the menisci become more susceptible to degeneration due to sustained mechanical stress accompanied by age-related changes in the extracellular matrix (ECM). However, the mechanistic relationship between age-related meniscal degeneration and osteoarthritis (OA) development is not yet fully understood. We have examined the nanomechanical properties of the ECM of normal, aged, and degenerated human menisci using atomic force microscopy (AFM). Elasticity maps of the ECM revealed a unique differential qualitative nanomechanical profile of healthy young tissue: prominent unimodal peaks in the elastic moduli distribution in each region (outer, middle, and inner). Healthy aged tissue showed similar regional elasticity but with both unimodal and bimodal distributions that included higher elastic moduli. In contrast, degenerated OA tissue showed the broadest distribution without prominent peaks indicative of substantially increased mechanical heterogeneity in the ECM. AFM analysis reveals distinct regional nanomechanical profiles that underlie aging-dependent tissue degeneration and OA.

FROM THE CLINICAL EDITOR

The authors of this study used atomic force microscopy to determine the nanomechanical properties of the extracellular matrix in normal and degenerated human menisci, as well as in menisci undergoing healthy aging. Comparison of these properties help to understand the relationship between healthy ageing, and age-dependent joint degeneration and osteoarthritis.

摘要

未标注

随着年龄增长,半月板由于持续的机械应力以及细胞外基质(ECM)中与年龄相关的变化而更容易发生退变。然而,与年龄相关的半月板退变和骨关节炎(OA)发展之间的机制关系尚未完全了解。我们使用原子力显微镜(AFM)检查了正常、老龄和退变的人类半月板ECM的纳米力学性能。ECM的弹性图谱揭示了健康年轻组织独特的差异性定性纳米力学特征:每个区域(外侧、中间和内侧)的弹性模量分布中都有明显的单峰峰值。健康老龄组织显示出类似的区域弹性,但具有单峰和双峰分布,且包括更高的弹性模量。相比之下,退变的OA组织显示出最宽的分布,没有明显峰值,表明ECM中的机械异质性大幅增加。AFM分析揭示了不同的区域纳米力学特征,这些特征是衰老依赖性组织退变和OA的基础。

临床编辑评论

本研究的作者使用原子力显微镜来确定正常和退变的人类半月板以及健康老龄半月板中细胞外基质的纳米力学性能。比较这些性能有助于理解健康衰老、年龄依赖性关节退变和骨关节炎之间的关系。

相似文献

引用本文的文献

本文引用的文献

10
The role of the meniscus in osteoarthritis genesis.半月板在骨关节炎发病中的作用。
Med Clin North Am. 2009 Jan;93(1):37-43, x. doi: 10.1016/j.mcna.2008.08.005.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验