Monteiro Maria, Séneca Joana, Magalhães Catarina
EcoBioTec Laboratory, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123, Porto, Portugal.
J Microbiol. 2014 Jul;52(7):537-47. doi: 10.1007/s12275-014-4114-0. Epub 2014 Jun 28.
Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.
硝化作用,即将氨氧化为亚硝酸盐和硝酸盐的过程,长期以来一直被视为全球氮循环中的核心生物过程,其首次描述可追溯到133年前。直到2005年,细菌都被认为是唯一能够进行硝化作用的生物体。然而,最近发现的一种化能自养型氨氧化古菌——嗜盐氨氧化菌,改变了我们对于参与硝化作用的生物体范围的认识,突显了氨氧化古菌(AOA)作为全球生物地球化学氮转化潜在参与者的重要性。这些古菌的独特性使得一个新的古菌门——奇古菌门得以确立。这些最新发现提升了微生物生态学界的全球科学关注度,并引发了对细菌与古菌氨氧化在广泛自然生态系统中的重要性的分析。在本综述中,我们基于主要的生理学、生态学和基因组学发现,按时间顺序呈现了当前关于硝化作用氨氧化途径的知识。