Suppr超能文献

用于估计人脑白质纤维方向的平均磁化率正则化磁化率张量成像(MMSR-STI)

Mean magnetic susceptibility regularized susceptibility tensor imaging (MMSR-STI) for estimating orientations of white matter fibers in human brain.

作者信息

Li Xu, van Zijl Peter C M

机构信息

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Magn Reson Med. 2014 Sep;72(3):610-9. doi: 10.1002/mrm.25322. Epub 2014 Jun 27.

Abstract

PURPOSE

An increasing number of studies show that magnetic susceptibility in white matter fibers is anisotropic and may be described by a tensor. However, the limited head rotation possible for in vivo human studies leads to an ill-conditioned inverse problem in susceptibility tensor imaging (STI). Here we suggest the combined use of limiting the susceptibility anisotropy to white matter and imposing morphology constraints on the mean magnetic susceptibility (MMS) for regularizing the STI inverse problem.

METHODS

The proposed MMS regularized STI (MMSR-STI) method was tested using computer simulations and in vivo human data collected at 3T. The fiber orientation estimated from both the STI and MMSR-STI methods was compared to that from diffusion tensor imaging (DTI).

RESULTS

Computer simulations show that the MMSR-STI method provides a more accurate estimation of the susceptibility tensor than the conventional STI approach. Similarly, in vivo data show that use of the MMSR-STI method leads to a smaller difference between the fiber orientation estimated from STI and DTI for most selected white matter fibers.

CONCLUSION

The proposed regularization strategy for STI can improve estimation of the susceptibility tensor in white matter.

摘要

目的

越来越多的研究表明,白质纤维中的磁化率是各向异性的,并且可以用张量来描述。然而,在活体人体研究中可能的头部旋转受限,导致在磁化率张量成像(STI)中出现病态反问题。在此,我们建议将磁化率各向异性限制在白质范围内,并对平均磁化率(MMS)施加形态学约束,以正则化STI反问题。

方法

使用计算机模拟以及在3T下收集的活体人体数据,对所提出的MMS正则化STI(MMSR-STI)方法进行测试。将从STI和MMSR-STI方法估计得到的纤维方向与从扩散张量成像(DTI)得到的纤维方向进行比较。

结果

计算机模拟表明,MMSR-STI方法比传统的STI方法能更准确地估计磁化率张量。同样,活体数据表明,对于大多数选定的白质纤维,使用MMSR-STI方法会使从STI估计的纤维方向与从DTI估计的纤维方向之间的差异更小。

结论

所提出的STI正则化策略可以改善白质中磁化率张量的估计。

相似文献

2
Diffusion-regularized susceptibility tensor imaging (DRSTI) of tissue microstructures in the human brain.
Med Image Anal. 2021 Jan;67:101827. doi: 10.1016/j.media.2020.101827. Epub 2020 Oct 20.
3
Regularized Asymmetric Susceptibility Tensor Imaging in the Human Brain in Vivo.
IEEE J Biomed Health Inform. 2022 Sep;26(9):4508-4518. doi: 10.1109/JBHI.2022.3182969. Epub 2022 Sep 9.
4
Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7 T.
Neuroimage. 2012 Aug 1;62(1):314-30. doi: 10.1016/j.neuroimage.2012.04.042. Epub 2012 Apr 28.
5
An improved asymmetric susceptibility tensor imaging model with frequency offset correction.
Magn Reson Med. 2023 Feb;89(2):828-844. doi: 10.1002/mrm.29494. Epub 2022 Oct 27.
6
DeepSTI: Towards tensor reconstruction using fewer orientations in susceptibility tensor imaging.
Med Image Anal. 2023 Jul;87:102829. doi: 10.1016/j.media.2023.102829. Epub 2023 Apr 26.
7
Susceptibility tensor imaging (STI) of the brain.
NMR Biomed. 2017 Apr;30(4). doi: 10.1002/nbm.3540. Epub 2016 Apr 27.
8
The influence of molecular order and microstructure on the R2* and the magnetic susceptibility tensor.
Magn Reson Imaging. 2016 Jun;34(5):682-9. doi: 10.1016/j.mri.2015.12.003. Epub 2015 Dec 10.
10
3D fiber tractography with susceptibility tensor imaging.
Neuroimage. 2012 Jan 16;59(2):1290-8. doi: 10.1016/j.neuroimage.2011.07.096. Epub 2011 Aug 16.

引用本文的文献

1
DeepSTI: Towards tensor reconstruction using fewer orientations in susceptibility tensor imaging.
Med Image Anal. 2023 Jul;87:102829. doi: 10.1016/j.media.2023.102829. Epub 2023 Apr 26.
2
Asymmetric susceptibility tensor imaging.
Magn Reson Med. 2021 Oct;86(4):2266-2275. doi: 10.1002/mrm.28823. Epub 2021 May 20.
3
Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction.
Neuroimage. 2019 Nov 15;202:116064. doi: 10.1016/j.neuroimage.2019.116064. Epub 2019 Aug 1.
4
Quantitative susceptibility mapping (QSM) as a means to monitor cerebral hematoma treatment.
J Magn Reson Imaging. 2018 Oct;48(4):907-915. doi: 10.1002/jmri.25957. Epub 2018 Jan 30.
6
Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.
Magn Reson Med. 2017 Nov;78(5):1683-1690. doi: 10.1002/mrm.26882. Epub 2017 Aug 30.
9
Magnetic susceptibility anisotropy outside the central nervous system.
NMR Biomed. 2017 Apr;30(4). doi: 10.1002/nbm.3544. Epub 2016 May 16.
10
Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping.
Neuroimage. 2016 Aug 15;137:107-115. doi: 10.1016/j.neuroimage.2016.05.033. Epub 2016 May 12.

本文引用的文献

1
Effects of white matter microstructure on phase and susceptibility maps.
Magn Reson Med. 2015 Mar;73(3):1258-69. doi: 10.1002/mrm.25189. Epub 2014 Mar 11.
2
High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla.
Front Hum Neurosci. 2013 Oct 29;7:710. doi: 10.3389/fnhum.2013.00710. eCollection 2013.
3
Gradient echo based fiber orientation mapping using R2* and frequency difference measurements.
Neuroimage. 2013 Dec;83:1011-23. doi: 10.1016/j.neuroimage.2013.07.054. Epub 2013 Jul 29.
6
Micro-compartment specific T2* relaxation in the brain.
Neuroimage. 2013 Aug 15;77:268-78. doi: 10.1016/j.neuroimage.2013.03.005. Epub 2013 Mar 22.
7
Origin of B0 orientation dependent R2(*) (=1/T2(*)) in white matter.
Neuroimage. 2013 Jun;73:71-9. doi: 10.1016/j.neuroimage.2013.01.051. Epub 2013 Jan 31.
9
Detecting microstructural properties of white matter based on compartmentalization of magnetic susceptibility.
Neuroimage. 2013 Apr 15;70:1-9. doi: 10.1016/j.neuroimage.2012.12.032. Epub 2012 Dec 23.
10
Imaging neural architecture of the brain based on its multipole magnetic response.
Neuroimage. 2013 Feb 15;67:193-202. doi: 10.1016/j.neuroimage.2012.10.050. Epub 2012 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验