Dibb Russell, Xie Luke, Wei Hongjiang, Liu Chunlei
Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA.
Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT, USA.
NMR Biomed. 2017 Apr;30(4). doi: 10.1002/nbm.3544. Epub 2016 May 16.
Magnetic-susceptibility-based MRI has made important contributions to the characterization of tissue microstructure, chemical composition, and organ function. This has motivated a number of studies to explore the link between microstructure and susceptibility in organs and tissues throughout the body, including the kidney, heart, and connective tissue. These organs and tissues have anisotropic magnetic susceptibility properties and cellular organizations that are distinct from the lipid organization of myelin in the brain. For instance, anisotropy is traced to the epithelial lipid orientation in the kidney, the myofilament proteins in the heart, and the collagen fibrils in the knee cartilage. The magnetic susceptibility properties of these and other tissues are quantified using specific MRI tools: susceptibility tensor imaging (STI), quantitative susceptibility mapping (QSM), and individual QSM measurements with respect to tubular and filament directions determined from diffusion tensor imaging. These techniques provide complementary and supplementary information to that produced by traditional MRI methods. In the kidney, STI can track tubules in all layers including the cortex, outer medulla, and inner medulla. In the heart, STI detected myofibers throughout the myocardium. QSM in the knee revealed three unique layers in articular cartilage by exploiting the anisotropic susceptibility features of collagen. While QSM and STI are promising tools to study tissue susceptibility, certain technical challenges must be overcome in order to realize routine clinical use. This paper reviews essential experimental findings of susceptibility anisotropy in the body, the underlying mechanisms, and the associated MRI methodologies. Copyright © 2016 John Wiley & Sons, Ltd.
基于磁化率的磁共振成像(MRI)在组织微观结构、化学成分和器官功能的表征方面做出了重要贡献。这激发了许多研究去探索全身各器官和组织中微观结构与磁化率之间的联系,包括肾脏、心脏和结缔组织。这些器官和组织具有各向异性的磁化率特性和细胞组织,与大脑中髓磷脂的脂质组织不同。例如,各向异性可追溯到肾脏中的上皮脂质取向、心脏中的肌丝蛋白以及膝关节软骨中的胶原纤维。使用特定的MRI工具对这些组织和其他组织的磁化率特性进行量化:磁化率张量成像(STI)、定量磁化率图谱(QSM)以及针对从扩散张量成像确定的管状和丝状方向的个体QSM测量。这些技术为传统MRI方法所产生的信息提供了补充和辅助。在肾脏中,STI可以追踪包括皮质、外髓质和内髓质在内的所有层中的肾小管。在心脏中,STI检测到整个心肌中的肌纤维。膝关节的QSM通过利用胶原的各向异性磁化率特征揭示了关节软骨中的三个独特层。虽然QSM和STI是研究组织磁化率很有前景的工具,但为了实现常规临床应用,必须克服某些技术挑战。本文综述了人体磁化率各向异性的重要实验结果、潜在机制以及相关的MRI方法。版权所有© 2016约翰威立父子有限公司。