Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, CA 90048, USA.
Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, CA 90048, USA.
Curr Opin Biotechnol. 2014 Aug;28:165-70. doi: 10.1016/j.copbio.2014.05.007. Epub 2014 Jun 27.
Prevalence of Type 2 diabetes has increased at an alarming rate, highlighting the need to correctly predict the development of this disease in order to allow intervention and thus, slow progression of the disease and resulting metabolic derangement. There have been many recent 'advances' geared toward the detection of pre-diabetes, including genome wide association studies and metabolomics. Although these approaches generate a large amount of data with a single blood sample, studies have indicated limited success using genetic and metabolomics information alone for identification of disease risk. Clinical assessment of the disposition index (DI), based on the hyperbolic law of glucose tolerance, is a powerful predictor of Type 2 diabetes, but is not easily assessed in the clinical setting. Thus, it is evident that combining genetic or metabolomic approaches for a more simple assessment of DI may provide a useful tool to identify those at highest risk for Type 2 diabetes, allowing for intervention and prevention.
2 型糖尿病的患病率呈惊人的速度上升,这凸显出正确预测这种疾病的发展的必要性,以便进行干预,从而减缓疾病的进展和由此产生的代谢紊乱。最近有许多针对糖尿病前期检测的“进展”,包括全基因组关联研究和代谢组学。虽然这些方法可以用单个血样生成大量的数据,但研究表明,仅使用遗传和代谢组学信息来识别疾病风险的成功率有限。基于葡萄糖耐量双曲线定律的临床处置指数(DI)评估是 2 型糖尿病的有力预测指标,但在临床环境中不易评估。因此,显然,结合遗传或代谢组学方法来更简单地评估 DI 可能提供一种有用的工具来识别那些患 2 型糖尿病风险最高的人,从而进行干预和预防。