McLeod Euan, Nguyen Chau, Huang Patrick, Luo Wei, Veli Muhammed, Ozcan Aydogan
Electrical Engineering Department, University of California , Los Angeles, California 90095, United States.
ACS Nano. 2014 Jul 22;8(7):7340-9. doi: 10.1021/nn502453h. Epub 2014 Jul 3.
Nanostructured optical components, such as nanolenses, direct light at subwavelength scales to enable, among others, high-resolution lithography, miniaturization of photonic circuits, and nanoscopic imaging of biostructures. A major challenge in fabricating nanolenses is the appropriate positioning of the lens with respect to the sample while simultaneously ensuring it adopts the optimal size and shape for the intended use. One application of particular interest is the enhancement of contrast and signal-to-noise ratio in the imaging of nanoscale objects, especially over wide fields-of-view (FOVs), which typically come with limited resolution and sensitivity for imaging nano-objects. Here we present a self-assembly method for fabricating time- and temperature-tunable nanolenses based on the condensation of a polymeric liquid around a nanoparticle, which we apply to the high-throughput on-chip detection of spheroids smaller than 40 nm, rod-shaped particles with diameter smaller than 20 nm, and biofunctionalized nanoparticles, all across an ultralarge FOV of >20 mm(2). Previous nanoparticle imaging efforts across similar FOVs have detected spheroids no smaller than 100 nm, and therefore our results demonstrate the detection of particles >15-fold smaller in volume, which in free space have >240 times weaker Rayleigh scattering compared to the particle sizes detected in earlier wide-field imaging work. This entire platform, with its tunable nanolens condensation and wide-field imaging functions, is also miniaturized into a cost-effective and portable device, which might be especially important for field use, mobile sensing, and diagnostics applications, including, for example, the measurement of viral load in bodily fluids.
纳米结构光学元件,如纳米透镜,可在亚波长尺度上引导光,从而实现高分辨率光刻、光子电路小型化以及生物结构的纳米级成像等诸多功能。制造纳米透镜的一个主要挑战是如何将透镜相对于样品进行适当定位,同时确保其采用适合预期用途的最佳尺寸和形状。一个特别令人感兴趣的应用是增强纳米级物体成像中的对比度和信噪比,尤其是在宽视场(FOV)情况下,宽视场成像通常对纳米物体成像的分辨率和灵敏度有限。在此,我们提出一种基于聚合物液体在纳米颗粒周围凝聚的自组装方法来制造时间和温度可调的纳米透镜,并将其应用于高通量片上检测小于40 nm的球体、直径小于20 nm的棒状颗粒以及生物功能化纳米颗粒,检测范围覆盖超过20 mm²的超大视场。此前在类似视场下对纳米颗粒成像的研究只能检测到不小于100 nm的球体,因此我们的结果表明能够检测到体积小15倍以上的颗粒,在自由空间中,这些颗粒的瑞利散射比早期宽场成像工作中检测到的颗粒尺寸弱240倍以上。这个具有可调纳米透镜凝聚和宽场成像功能的整个平台还被小型化为一种经济高效且便于携带的设备,这对于现场使用、移动传感和诊断应用可能尤为重要,例如包括测量体液中的病毒载量。