Cheng Dongliang, Prasad Dilip K, Brown Michael S
J Opt Soc Am A Opt Image Sci Vis. 2014 May 1;31(5):1049-58. doi: 10.1364/JOSAA.31.001049.
Color constancy is a well-studied topic in color vision. Methods are generally categorized as (1) low-level statistical methods, (2) gamut-based methods, and (3) learning-based methods. In this work, we distinguish methods depending on whether they work directly from color values (i.e., color domain) or from values obtained from the image's spatial information (e.g., image gradients/frequencies). We show that spatial information does not provide any additional information that cannot be obtained directly from the color distribution and that the indirect aim of spatial-domain methods is to obtain large color differences for estimating the illumination direction. This finding allows us to develop a simple and efficient illumination estimation method that chooses bright and dark pixels using a projection distance in the color distribution and then applies principal component analysis to estimate the illumination direction. Our method gives state-of-the-art results on existing public color constancy datasets as well as on our newly collected dataset (NUS dataset) containing 1736 images from eight different high-end consumer cameras.
颜色恒常性是颜色视觉中一个经过充分研究的主题。方法通常分为三类:(1)低层次统计方法,(2)基于色域的方法,以及(3)基于学习的方法。在这项工作中,我们根据方法是直接从颜色值(即颜色域)还是从图像空间信息获得的值(如图像梯度/频率)来区分方法。我们表明,空间信息并不能提供任何无法直接从颜色分布中获得的额外信息,并且空间域方法的间接目的是获得大的颜色差异以估计光照方向。这一发现使我们能够开发一种简单有效的光照估计方法,该方法使用颜色分布中的投影距离选择亮像素和暗像素,然后应用主成分分析来估计光照方向。我们的方法在现有的公共颜色恒常性数据集以及我们新收集的包含来自八个不同高端消费相机的1736张图像的数据集(NUS数据集)上取得了领先的结果。