Suppr超能文献

不同光照条件下的肤色估计

Skin Tone Estimation under Diverse Lighting Conditions.

作者信息

Mbatha Success K, Booysen Marthinus J, Theart Rensu P

机构信息

Department of E&E, Stellenbosch University, Stellenbosch 7602, South Africa.

Department of Industrial Engineering, Stellenbosch University, Stellenbosch 7602, South Africa.

出版信息

J Imaging. 2024 Apr 30;10(5):109. doi: 10.3390/jimaging10050109.

Abstract

Knowledge of a person's level of skin pigmentation, or so-called "skin tone", has proven to be an important building block in improving the performance and fairness of various applications that rely on computer vision. These include medical diagnosis of skin conditions, cosmetic and skincare support, and face recognition, especially for darker skin tones. However, the perception of skin tone, whether by the human eye or by an optoelectronic sensor, uses the reflection of light from the skin. The source of this light, or illumination, affects the skin tone that is perceived. This study aims to refine and assess a convolutional neural network-based skin tone estimation model that provides consistent accuracy across different skin tones under various lighting conditions. The 10-point Monk Skin Tone Scale was used to represent the skin tone spectrum. A dataset of 21,375 images was captured from volunteers across the pigmentation spectrum. Experimental results show that a regression model outperforms other models, with an estimated-to-target distance of 0.5. Using a threshold estimated-to-target skin tone distance of 2 for all lights results in average accuracy values of 85.45% and 97.16%. With the Monk Skin Tone Scale segmented into three groups, the lighter exhibits strong accuracy, the middle displays lower accuracy, and the dark falls between the two. The overall skin tone estimation achieves average error distances in the LAB space of 16.40±20.62.

摘要

了解一个人的皮肤色素沉着水平,即所谓的“肤色”,已被证明是提高各种依赖计算机视觉的应用程序的性能和公平性的重要组成部分。这些应用包括皮肤疾病的医学诊断、美容和护肤支持以及面部识别,尤其是对于较深肤色的面部识别。然而,无论是人眼还是光电传感器对肤色的感知,都利用了皮肤对光的反射。这种光的来源,即照明,会影响所感知的肤色。本研究旨在优化和评估一种基于卷积神经网络的肤色估计模型,该模型在各种光照条件下对不同肤色都能提供一致的准确性。使用10分制的蒙克肤色量表来表示肤色光谱。从色素沉着光谱范围内的志愿者那里采集了一个包含21375张图像的数据集。实验结果表明,回归模型优于其他模型,估计值与目标值的距离为0.5。对所有光照条件使用估计值与目标肤色距离的阈值2,平均准确率分别为85.45%和97.16%。将蒙克肤色量表分为三组后,较浅肤色组表现出较高的准确率,中间肤色组准确率较低,较深肤色组则介于两者之间。在LAB空间中,整体肤色估计的平均误差距离为16.40±20.62。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2778/11122461/e56ee34e2120/jimaging-10-00109-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验