Ramsdell Talia L, Huppert Laura A, Sysoeva Tatyana A, Fortune Sarah M, Burton Briana M
Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
J Mol Biol. 2015 Mar 13;427(5):1119-32. doi: 10.1016/j.jmb.2014.06.013. Epub 2014 Jun 27.
Among protein secretion systems, there are specialized ATPases that serve different functions such as substrate recognition, substrate unfolding, and assembly of the secretory machinery. ESX (early secretory antigen target 6 kDa secretion) protein secretion systems require FtsK/SpoIIIE family ATPases but the specific function of these ATPases is poorly understood. The ATPases of ESX secretion systems have a unique domain architecture among proteins of the FtsK/SpoIIIE family. All well-studied FtsK family ATPases to date have one ATPase domain and oligomerize to form a functional molecular machine, most commonly a hexameric ring. In contrast, the ESX ATPases have three ATPase domains, encoded either by a single gene or by two operonic genes. It is currently unknown which of the ATPase domains is catalytically functional and whether each domain plays the same or a different function. Here we focus on the ATPases of two ESX systems, the ESX-1 system of Mycobacterium tuberculosis and the yuk system of Bacillus subtilis. We show that ATP hydrolysis by the ESX ATPase is required for secretion, suggesting that this enzyme at least partly fuels protein translocation. We further show that individual ATPase domains play distinct roles in substrate translocation and complex formation. Comparing the single-chain and split ESX ATPases, we reveal differences in the requirements of these unique secretory ATPases.
在蛋白质分泌系统中,存在一些专门的ATP酶,它们发挥着不同的功能,如底物识别、底物解折叠以及分泌机制的组装。ESX(早期分泌抗原靶点6 kDa分泌)蛋白分泌系统需要FtsK/SpoIIIE家族的ATP酶,但这些ATP酶的具体功能尚不清楚。ESX分泌系统的ATP酶在FtsK/SpoIIIE家族蛋白中具有独特的结构域架构。迄今为止,所有经过充分研究的FtsK家族ATP酶都有一个ATP酶结构域,并寡聚形成一个功能性分子机器,最常见的是六聚体环。相比之下,ESX ATP酶有三个ATP酶结构域,由单个基因或两个操纵子基因编码。目前尚不清楚哪个ATP酶结构域具有催化功能,以及每个结构域发挥的功能是否相同或不同。在这里,我们重点研究了两个ESX系统的ATP酶,即结核分枝杆菌的ESX-1系统和枯草芽孢杆菌的yuk系统。我们发现ESX ATP酶的ATP水解是分泌所必需的,这表明该酶至少部分为蛋白质转运提供能量。我们进一步表明,单个ATP酶结构域在底物转运和复合物形成中发挥着不同的作用。通过比较单链和分裂的ESX ATP酶,我们揭示了这些独特的分泌ATP酶在需求上的差异。