Departments of Biology and.
Electrical Engineering, University of Washington, Seattle, WA 98195.
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9407-12. doi: 10.1073/pnas.1324147111. Epub 2014 Jun 16.
Auxin influences nearly every aspect of plant biology through a simple signaling pathway; however, it remains unclear how much of the diversity in auxin effects is explained by variation in the core signaling components and which properties of these components may contribute to diversification in response dynamics. Here, we recapitulated the entire Arabidopsis thaliana forward nuclear auxin signal transduction pathway in Saccharomyces cerevisiae to test whether signaling module composition enables tuning of the dynamic response. Sensitivity analysis guided by a small mathematical model revealed the centrality of auxin/indole-3-acetic acid (Aux/IAA) transcriptional corepressors in controlling response dynamics and highlighted the strong influence of natural variation in Aux/IAA degradation rates on circuit performance. When the basic auxin response circuit was expanded to include multiple Aux/IAAs, we found that dominance relationships between coexpressed Aux/IAAs were sufficient to generate distinct response modules similar to those seen during plant development. Our work provides a new method for dissecting auxin signaling and demonstrates the key role of Aux/IAAs in tuning auxin response dynamics.
生长素通过一个简单的信号通路影响植物生物学的几乎各个方面;然而,生长素作用的多样性有多少是由核心信号成分的变异解释的,以及这些成分的哪些特性可能有助于响应动力学的多样化,目前仍不清楚。在这里,我们在酿酒酵母中重新构建了整个拟南芥的正向核生长素信号转导途径,以测试信号模块组成是否能够调整动态响应。由一个小数学模型指导的敏感性分析揭示了生长素/吲哚-3-乙酸(Aux/IAA)转录共抑制因子在控制响应动力学中的核心作用,并强调了 Aux/IAA 降解率的自然变异对电路性能的强烈影响。当基本的生长素响应回路扩展到包含多个 Aux/IAAs 时,我们发现共表达的 Aux/IAAs 之间的支配关系足以产生类似于植物发育过程中观察到的不同响应模块。我们的工作为剖析生长素信号提供了一种新方法,并证明了 Aux/IAAs 在调整生长素响应动力学中的关键作用。