Suppr超能文献

用于骨髓瘤和骨微环境靶向的工程纳米医学。

Engineered nanomedicine for myeloma and bone microenvironment targeting.

机构信息

Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115;

出版信息

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10287-92. doi: 10.1073/pnas.1401337111. Epub 2014 Jun 30.

Abstract

Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(D,L-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.

摘要

骨骼是肿瘤生长的有利微环境,也是转移性癌细胞的常见靶标。由于药物可用性和微环境诱导的耐药性等问题,靶向骨髓中的癌症仍然是一个关键的肿瘤学挑战。在此,我们设计了骨靶向聚合物纳米粒子(NPs),用于在时空上控制治疗剂递送到骨骼,从而减少脱靶效应并增加局部药物浓度。这些 NPs 由聚(D,L-丙交酯-co-乙交酯)(PLGA)、聚乙二醇(PEG)和双膦酸盐(或阿仑膦酸钠,一种靶向配体)组成。通过混合合成聚合物的不同比例来制备工程化的 NPs:PLGA-b-PEG 和阿仑膦酸钠偶联聚合物 PLGA-b-PEG-Ald,这分别确保了长循环和靶向能力。通过羟磷灰石结合测定和对骨碎片的粘附的体外成像来研究 Ald-PEG-PLGA NPs 的骨结合能力。荧光标记的 NPs 的体内生物分布显示,与非靶向 PEG-PLGA NPs 相比,靶向 Ald-PEG-PLGA NPs 具有更高的保留、积累和骨归巢能力。构建了一系列硼替佐米负载的 NPs(骨靶向 Ald-Bort-NPs 和非靶向 Bort-NPs),并对其进行了最佳理化性质、药物载量和释放特性的筛选。在多发性骨髓瘤(MM)小鼠模型中测试了 Ald-Bort-NPs 的疗效。结果表明,与 Ald-Empty-NPs(无药物)或游离药物相比,预先用 Ald-Bort-NPs 处理的小鼠的生存率显著提高,肿瘤负担降低。我们还观察到,硼替佐米作为预处理方案,改变了骨微环境并增强了骨强度和体积。我们的研究结果表明,具有骨靶向特异性的 NP 为基础的抗癌疗法是一种具有临床相关性的药物递送方法,可抑制 MM 中的肿瘤进展。

相似文献

1
Engineered nanomedicine for myeloma and bone microenvironment targeting.用于骨髓瘤和骨微环境靶向的工程纳米医学。
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10287-92. doi: 10.1073/pnas.1401337111. Epub 2014 Jun 30.

引用本文的文献

6
Recent advances in targeted drug delivery systems for multiple myeloma.多发性骨髓瘤靶向给药系统的最新进展
J Control Release. 2024 Dec;376:215-230. doi: 10.1016/j.jconrel.2024.10.003. Epub 2024 Oct 12.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验