Suppr超能文献

Effect of high-pressure torsion deformation on surface properties and biocompatibility of Ti-50.9 mol. %Ni alloys.

作者信息

Awang Shri Dayangku Noorfazidah, Tsuchiya Koichi, Yamamoto Akiko

机构信息

Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan and Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan.

Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.

出版信息

Biointerphases. 2014 Jun;9(2):029007. doi: 10.1116/1.4867402.

Abstract

Ti-50.9 mol. %Ni was subjected to high-pressure torsion (HPT) deformation for different number of rotations (N) of 0.25, 0.5, 1, 5, and 10. The structural changes induced by HPT were analyzed using x-ray diffractometer (XRD). The surfaces of the samples before and after cell culture were characterized using x-ray photoelectron spectroscopy (XPS). The biocompatibility of the samples was evaluated based on a colony formation assay, nickel ion release, and protein adsorption behavior. XRD analysis revealed the occurrence of grain refinement, phase transformation, and amorphization in the TiNi samples by HPT deformation due to high dislocation density. The changes in chemical composition and thickness of the passive film formed on the surface observed in XPS analysis reveals improvement in the stability of the passive film by HPT deformation. The microstructural change due to the deformation was found to influence the biocompatibility behaviors of TiNi. Plating efficiency and protein adsorption were found to be higher when the samples are in stress-induced martensitic or amorphous state. HPT deformation was found to alter the surface behavior of the TiNi, which effectively reduced the Ni ion release and improved its biocompatibility.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验