Schneider Kristan A, Escalante Ananias A
Department MNI, University of Applied Sciences Mittweida, Mittweida, Germany.
School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America; Center for Evolutionary Medicine and Informatics, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America.
PLoS One. 2014 Jul 2;9(7):e97899. doi: 10.1371/journal.pone.0097899. eCollection 2014.
The number of co-infections of a pathogen (multiplicity of infection or MOI) is a relevant parameter in epidemiology as it relates to transmission intensity. Notably, such quantities can be built into a metric in the context of disease control and prevention. Having applications to malaria in mind, we develop here a maximum-likelihood (ML) framework to estimate the quantities of interest at low computational and no additional costs to study designs or data collection. We show how the ML estimate for the quantities of interest and corresponding confidence-regions are obtained from multiple genetic loci. Assuming specifically that infections are rare and independent events, the number of infections per host follows a conditional Poisson distribution. Under this assumption, we show that a unique ML estimate for the parameter (λ) describing MOI exists which is found by a simple recursion. Moreover, we provide explicit formulas for asymptotic confidence intervals, and show that profile-likelihood-based confidence intervals exist, which are found by a simple two-dimensional recursion. Based on the confidence intervals we provide alternative statistical tests for the MOI parameter. Finally, we illustrate the methods on three malaria data sets. The statistical framework however is not limited to malaria.
病原体的共感染数量(感染复数或MOI)在流行病学中是一个相关参数,因为它与传播强度有关。值得注意的是,在疾病控制和预防的背景下,这些数量可以纳入一个指标中。考虑到其在疟疾方面的应用,我们在此开发了一个最大似然(ML)框架,以在低计算成本且不增加研究设计或数据收集成本的情况下估计感兴趣的数量。我们展示了如何从多个基因位点获得感兴趣数量的ML估计值和相应的置信区域。具体假设感染是罕见且独立的事件,每个宿主的感染数量遵循条件泊松分布。在此假设下,我们表明存在一个用于描述MOI的参数(λ)的唯一ML估计值,它通过简单的递归找到。此外,我们提供了渐近置信区间的显式公式,并表明基于轮廓似然的置信区间存在,它通过简单的二维递归找到。基于这些置信区间,我们为MOI参数提供了替代统计检验。最后,我们在三个疟疾数据集上说明了这些方法。然而,该统计框架并不局限于疟疾。