Caballero David, Voituriez Raphaël, Riveline Daniel
Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires/Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg and Centre National de la Recherche Scientifique UMR 7006, Strasbourg, France; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale (U964),Université de Strasbourg, Illkirch, France.
Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique UMR 7600; Laboratoire Jean Perrin, Centre National de la Recherche Scientifique UMR 823, Université Pierre et Marie Curie, Paris, France.
Biophys J. 2014 Jul 1;107(1):34-42. doi: 10.1016/j.bpj.2014.05.002.
Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk.
许多生理现象都涉及细胞的定向迁移。这通常归因于体内的化学梯度。最近,其他线索已被证明可在体外引导细胞,包括硬度/粘附梯度或微图案化的粘附基序。然而,导致这些偏向性迁移的细胞机制仍然未知,而且通常甚至运动方向都是不可预测的。在这项研究中,我们展示了波动的突起在棘轮状结构上驱动NIH3T3细胞迁移中的关键作用。我们确定了有效突起的概念以及相关的方向指数。我们对突起统计数据的分析有助于在所有研究条件下对细胞轨迹进行定量预测。我们通过改变粘附模式来改变外部线索。我们还使用药物处理来改变内部线索,这改变了突起活性。随机性影响短期和长期步骤。我们开发了一个理论模型,表明突起波动的不对称性足以预测与长期运动相关的所有测量值,长期运动可描述为有偏的持续随机游走。