IEEE Trans Cybern. 2015 Mar;45(3):548-61. doi: 10.1109/TCYB.2014.2330844. Epub 2014 Jun 27.
The classical fuzzy system modeling methods implicitly assume data generated from a single task, which is essentially not in accordance with many practical scenarios where data can be acquired from the perspective of multiple tasks. Although one can build an individual fuzzy system model for each task, the result indeed tells us that the individual modeling approach will get poor generalization ability due to ignoring the intertask hidden correlation. In order to circumvent this shortcoming, we consider a general framework for preserving the independent information among different tasks and mining hidden correlation information among all tasks in multitask fuzzy modeling. In this framework, a low-dimensional subspace (structure) is assumed to be shared among all tasks and hence be the hidden correlation information among all tasks. Under this framework, a multitask Takagi-Sugeno-Kang (TSK) fuzzy system model called MTCS-TSK-FS (TSK-FS for multiple tasks with common hidden structure), based on the classical L2-norm TSK fuzzy system, is proposed in this paper. The proposed model can not only take advantage of independent sample information from the original space for each task, but also effectively use the intertask common hidden structure among multiple tasks to enhance the generalization performance of the built fuzzy systems. Experiments on synthetic and real-world datasets demonstrate the applicability and distinctive performance of the proposed multitask fuzzy system model in multitask regression learning scenarios.
经典的模糊系统建模方法隐含地假设数据是从单个任务中生成的,这与许多实际场景不符,在这些场景中,可以从多个任务的角度获取数据。虽然可以为每个任务构建一个单独的模糊系统模型,但结果确实表明,由于忽略了任务间的隐藏相关性,这种单独建模的方法将获得较差的泛化能力。为了规避这一缺点,我们考虑了一种在多任务模糊建模中保留不同任务之间独立信息并挖掘所有任务之间隐藏相关性信息的通用框架。在这个框架中,假设存在一个低维子空间(结构),它在所有任务中共享,因此是所有任务之间的隐藏相关性信息。在这个框架下,本文提出了一种基于经典 L2 范数 TSK 模糊系统的多任务 Takagi-Sugeno-Kang (TSK) 模糊系统模型,称为 MTCS-TSK-FS(具有公共隐藏结构的多任务 TSK-FS)。所提出的模型不仅可以利用每个任务原始空间中的独立样本信息,还可以有效地利用多任务之间的任务间公共隐藏结构,从而提高所构建模糊系统的泛化性能。在合成和真实数据集上的实验表明了所提出的多任务模糊系统模型在多任务回归学习场景中的适用性和独特性能。