Suppr超能文献

基于图的 Takagi-Sugeno-Kang 模糊系统评估血液透析患者的充分性。

Assessing the Adequacy of Hemodialysis Patients via the Graph-Based Takagi-Sugeno-Kang Fuzzy System.

机构信息

Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000 Wuxi, China.

Nursing Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000 Wuxi, China.

出版信息

Comput Math Methods Med. 2021 Jul 27;2021:9036322. doi: 10.1155/2021/9036322. eCollection 2021.

Abstract

Maintenance hemodialysis is the main method for the treatment of end-stage renal disease in China. The / value is the gold standard of hemodialysis adequacy. However, / requires repeated blood drawing and evaluation; it is hard to monitor dialysis adequacy frequently. In order to meet the need for repeated clinical assessments of dialysis adequacy, we want to find a noninvasive way to assess dialysis adequacy. Therefore, we collect some clinically relevant data and develop a machine learning- (ML-) based model to predict dialysis adequacy for clinical hemodialysis patients. We collect 250 patients, including gender, age, ultrafiltration (UF), predialysis body weight (preBW), postdialysis body weights (postBW), blood pressure (BP), heart rate (HR), and blood flow (BF). An efficient graph-based Takagi-Sugeno-Kang Fuzzy System (G-TSK-FS) model is proposed to predict the dialysis adequacy of hemodialysis patients. The root mean square error (RMSE) of our model is 0.1578. The proposed model can be used as a feasible method to predict dialysis adequacy, providing a new way for clinical practice. Our G-TSK-FS model could be used as a feasible method to predict dialysis adequacy, providing a new way for clinical practice.

摘要

维持性血液透析是中国治疗终末期肾病的主要方法。Kt/V 是血液透析充分性的金标准。然而,Kt/V 需要反复采血和评估,难以频繁监测透析充分性。为了满足对透析充分性进行反复临床评估的需求,我们希望找到一种非侵入性的方法来评估透析充分性。因此,我们收集了一些临床相关数据,并开发了一种基于机器学习 (ML) 的模型,以预测临床血液透析患者的透析充分性。我们收集了 250 名患者的数据,包括性别、年龄、超滤 (UF)、透析前体重 (preBW)、透析后体重 (postBW)、血压 (BP)、心率 (HR) 和血流量 (BF)。提出了一种有效的基于图的 Takagi-Sugeno-Kang 模糊系统 (G-TSK-FS) 模型来预测血液透析患者的透析充分性。我们模型的均方根误差 (RMSE) 为 0.1578。该模型可作为预测透析充分性的一种可行方法,为临床实践提供了新途径。我们的 G-TSK-FS 模型可作为预测透析充分性的一种可行方法,为临床实践提供了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验