Suppr超能文献

使用决策程序发现随机微分方程中的罕见行为:在最小细胞周期模型中的应用。

Discovering rare behaviours in stochastic differential equations using decision procedures: applications to a minimal cell cycle model.

作者信息

Ghosh Arup Kumar, Hussain Faraz, Jha Susmit, Langmead Christopher J, Jha Sumit Kumar

机构信息

Computer Science Department, University of Central Florida, Orlando FL 32816, USA.

Strategic CAD Labs, Intel, Portland, OR 97124, USA.

出版信息

Int J Bioinform Res Appl. 2014;10(4-5):540-58. doi: 10.1504/IJBRA.2014.062999.

Abstract

Stochastic Differential Equation (SDE) models are used to describe the dynamics of complex systems with inherent randomness. The primary purpose of these models is to study rare but interesting or important behaviours, such as the formation of a tumour. Stochastic simulations are the most common means for estimating (or bounding) the probability of rare behaviours, but the cost of simulations increases with the rarity of events. To address this problem, we introduce a new algorithm specifically designed to quantify the likelihood of rare behaviours in SDE models. Our approach relies on temporal logics for specifying rare behaviours of interest, and on the ability of bit-vector decision procedures to reason exhaustively about fixed-precision arithmetic. We apply our algorithm to a minimal parameterised model of the cell cycle, and take Brownian noise into account while investigating the likelihood of irregularities in cell size and time between cell divisions.

摘要

随机微分方程(SDE)模型用于描述具有内在随机性的复杂系统的动态变化。这些模型的主要目的是研究罕见但有趣或重要的行为,例如肿瘤的形成。随机模拟是估计(或界定)罕见行为概率的最常用方法,但模拟成本会随着事件的罕见程度而增加。为了解决这个问题,我们引入了一种专门设计的新算法,用于量化SDE模型中罕见行为的可能性。我们的方法依赖于时态逻辑来指定感兴趣的罕见行为,并依赖于位向量决策程序对固定精度算术进行详尽推理的能力。我们将算法应用于细胞周期的最小参数化模型,并在研究细胞大小不规则性和细胞分裂间隔时间的可能性时考虑了布朗噪声。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验