Suppr超能文献

使用校准动脉自旋标记的磁共振成像对肺灌注进行定量分析。

Magnetic resonance imaging quantification of pulmonary perfusion using calibrated arterial spin labeling.

作者信息

Arai Tatsuya J, Prisk G Kim, Holverda Sebastiaan, Sá Rui Carlos, Theilmann Rebecca J, Henderson A Cortney, Cronin Matthew V, Buxton Richard B, Hopkins Susan R

机构信息

Medicine, University of California San Diego-UCSD, USA.

出版信息

J Vis Exp. 2011 May 30(51):2712. doi: 10.3791/2712.

Abstract

UNLABELLED

This demonstrates a MR imaging method to measure the spatial distribution of pulmonary blood flow in healthy subjects during normoxia (inspired O(2), fraction (F(I)O(2)) = 0.21) hypoxia (F(I)O(2) = 0.125), and hyperoxia (F(I)O(2) = 1.00). In addition, the physiological responses of the subject are monitored in the MR scan environment. MR images were obtained on a 1.5 T GE MRI scanner during a breath hold from a sagittal slice in the right lung at functional residual capacity. An arterial spin labeling sequence (ASL-FAIRER) was used to measure the spatial distribution of pulmonary blood flow and a multi-echo fast gradient echo (mGRE) sequence was used to quantify the regional proton (i.e. H(2)O) density, allowing the quantification of density-normalized perfusion for each voxel (milliliters blood per minute per gram lung tissue). With a pneumatic switching valve and facemask equipped with a 2-way non-rebreathing valve, different oxygen concentrations were introduced to the subject in the MR scanner through the inspired gas tubing. A metabolic cart collected expiratory gas via expiratory tubing. Mixed expiratory O(2) and CO(2) concentrations, oxygen consumption, carbon dioxide production, respiratory exchange ratio, respiratory frequency and tidal volume were measured. Heart rate and oxygen saturation were monitored using pulse-oximetry. Data obtained from a normal subject showed that, as expected, heart rate was higher in hypoxia (60 bpm) than during normoxia (51) or hyperoxia (50) and the arterial oxygen saturation (SpO(2)) was reduced during hypoxia to 86%. Mean ventilation was 8.31 L/min BTPS during hypoxia, 7.04 L/min during normoxia, and 6.64 L/min during hyperoxia. Tidal volume was 0.76 L during hypoxia, 0.69 L during normoxia, and 0.67 L during hyperoxia. Representative quantified ASL data showed that the mean density normalized perfusion was 8.86 ml/min/g during hypoxia, 8.26 ml/min/g during normoxia and 8.46 ml/min/g during hyperoxia, respectively. In this subject, the relative dispersion, an index of global heterogeneity, was increased in hypoxia (1.07 during hypoxia, 0.85 during normoxia, and 0.87 during hyperoxia) while the fractal dimension (Ds), another index of heterogeneity reflecting vascular branching structure, was unchanged (1.24 during hypoxia, 1.26 during normoxia, and 1.26 during hyperoxia). Overview. This protocol will demonstrate the acquisition of data to measure the distribution of pulmonary perfusion noninvasively under conditions of normoxia, hypoxia, and hyperoxia using a magnetic resonance imaging technique known as arterial spin labeling (ASL).

RATIONALE

Measurement of pulmonary blood flow and lung proton density using MR technique offers high spatial resolution images which can be quantified and the ability to perform repeated measurements under several different physiological conditions. In human studies, PET, SPECT, and CT are commonly used as the alternative techniques. However, these techniques involve exposure to ionizing radiation, and thus are not suitable for repeated measurements in human subjects.

摘要

未标注

本研究展示了一种磁共振成像方法,用于测量健康受试者在常氧(吸入氧分数(F(I)O(2))=0.21)、低氧(F(I)O(2)=0.125)和高氧(F(I)O(2)=1.00)状态下肺血流的空间分布。此外,在磁共振扫描环境中监测受试者的生理反应。在1.5T的GE磁共振成像扫描仪上,于功能残气量时从右肺矢状位切片进行屏气扫描获取磁共振图像。采用动脉自旋标记序列(ASL-FAIRER)测量肺血流的空间分布,并使用多回波快速梯度回波(mGRE)序列量化区域质子(即H(2)O)密度,从而能够对每个体素的密度归一化灌注进行量化(每分钟每克肺组织的毫升血液)。通过配备双路非再呼吸阀的气动切换阀和面罩,经吸入气体管道向磁共振扫描仪内的受试者输送不同氧浓度的气体。代谢车通过呼气管道收集呼出气体。测量混合呼出气体中的O(2)和CO(2)浓度、氧耗量、二氧化碳产生量、呼吸交换率、呼吸频率和潮气量。使用脉搏血氧仪监测心率和血氧饱和度。从一名正常受试者获得的数据显示,正如预期的那样,低氧时心率(60次/分钟)高于常氧(51次/分钟)或高氧时(50次/分钟),并且低氧时动脉血氧饱和度(SpO(2))降至86%。低氧时平均通气量为8.31升/分钟BTPS,常氧时为7.04升/分钟,高氧时为6.64升/分钟。低氧时潮气量为0.76升,常氧时为0.69升,高氧时为0.67升。代表性的量化ASL数据显示,低氧时平均密度归一化灌注分别为8.86毫升/分钟/克,常氧时为8.26毫升/分钟/克,高氧时为8.46毫升/分钟/克。在该受试者中,反映整体异质性的指标相对离散度在低氧时增加(低氧时为1.07,常氧时为0.85,高氧时为0.87),而反映血管分支结构的另一个异质性指标分形维数(Ds)保持不变(低氧时为1.24,常氧时为1.26,高氧时为1.26)。概述。本方案将展示使用一种称为动脉自旋标记(ASL)的磁共振成像技术,在常氧、低氧和高氧条件下无创测量肺灌注分布的数据采集过程。

原理

使用磁共振技术测量肺血流和肺质子密度可提供高空间分辨率图像,这些图像能够进行量化,并且能够在几种不同生理条件下进行重复测量。在人体研究中,正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)和计算机断层扫描(CT)通常用作替代技术。然而,这些技术涉及电离辐射暴露,因此不适合在人体受试者中进行重复测量。

相似文献

3
Assessing the pulmonary vascular responsiveness to oxygen with proton MRI.用质子 MRI 评估肺血管对氧气的反应性。
J Appl Physiol (1985). 2024 Apr 1;136(4):853-863. doi: 10.1152/japplphysiol.00747.2023. Epub 2024 Feb 22.

引用本文的文献

1
A novel nonlinear analysis of blood flow dynamics applied to the human lung.一种应用于人体肺部的血流动力学新型非线性分析。
J Appl Physiol (1985). 2022 Jun 1;132(6):1546-1559. doi: 10.1152/japplphysiol.00715.2021. Epub 2022 Apr 14.
6
Imaging of pulmonary hypertension: an update.肺动脉高压的影像学:最新进展
Cardiovasc Diagn Ther. 2018 Jun;8(3):279-296. doi: 10.21037/cdt.2018.01.10.

本文引用的文献

4
Pulmonary perfusion in the prone and supine postures in the normal human lung.正常人体肺部俯卧位和仰卧位时的肺灌注情况。
J Appl Physiol (1985). 2007 Sep;103(3):883-94. doi: 10.1152/japplphysiol.00292.2007. Epub 2007 Jun 14.
9
Standardisation of spirometry.肺活量测定法的标准化
Eur Respir J. 2005 Aug;26(2):319-38. doi: 10.1183/09031936.05.00034805.
10
Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema.缺氧和高原肺水肿期间的肺血流异质性
Am J Respir Crit Care Med. 2005 Jan 1;171(1):83-7. doi: 10.1164/rccm.200406-707OC. Epub 2004 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验