Suppr超能文献

正常人体肺中,仰卧位时比俯卧位时通气-灌注比的重力分布更均匀。

The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.

机构信息

Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

J Appl Physiol (1985). 2013 Aug 1;115(3):313-24. doi: 10.1152/japplphysiol.01531.2012. Epub 2013 Apr 25.

Abstract

The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (Va/Q) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional Va/Q ratio, the gravitational gradients in proton density, ventilation, perfusion, and Va/Q ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min(-1)·ml(-1)) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min(-1)·ml(-1)) images to obtain regional Va/Q ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (-0.17 ± 0.10 ml·min(-1)·ml(-1)·cm(-1) supine, -0.040 ± 0.03 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02) as was the slope of the perfusion-height relationship (-0.14 ± 0.05 ml·min(-1)·ml(-1)·cm(-1) supine, -0.08 ± 0.09 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02). There was a significant gravitational gradient in Va/Q ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm(-1) supine, 0.04 ± 0.03 cm(-1) prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional Va/Q ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of gravity on Va/Q matching.

摘要

胸腔内压力的重力梯度在俯卧位时比仰卧位时小。因此,通气的重力分布在俯卧位时更均匀,这可能会影响区域性通气-灌注(V a/Q)比值。本研究使用一种新的功能性肺部磁共振成像技术来测量区域性 V a/Q 比值,在俯卧位和仰卧位时测量质子密度、通气、灌注和 V a/Q 比值的重力梯度。在功能残气量下,在右肺的单个矢状切片中,在 7 位健康受试者中采集数据。使用特定通气成像定量局部特定通气图像,并使用快速梯度回波序列获得质子密度图像,将其注册并平滑以计算局部肺泡通气。使用动脉自旋标记测量灌注。将通气(ml·min(-1)·ml(-1))图像以体素为基础与平滑的灌注(ml·min(-1)·ml(-1))图像相结合,以获得区域性 V a/Q 比值。从最依赖重力的肺开始,在 1cm 重力平面内的体素上对数据进行平均。肺泡通气与垂直高度之间的关系斜率在俯卧位时小于仰卧位(-0.17±0.10 ml·min(-1)·ml(-1)·cm(-1)仰卧位,-0.040±0.03 俯卧位 ml·min(-1)·ml(-1)·cm(-1),P=0.02),灌注与高度之间的关系斜率也是如此(-0.14±0.05 ml·min(-1)·ml(-1)·cm(-1)仰卧位,-0.08±0.09 俯卧位 ml·min(-1)·ml(-1)·cm(-1),P=0.02)。在两种体位下均存在明显的 V a/Q 比值重力梯度(P<0.05),俯卧位时的梯度较小(0.09±0.08 cm(-1)仰卧位,0.04±0.03 cm(-1)俯卧位,P=0.04)。通气、灌注和区域性 V a/Q 比值的重力梯度在仰卧位时大于俯卧位,这表明胸腔结构、气道和血管树解剖结构以及重力对 V a/Q 匹配的影响之间存在相互作用。

相似文献

1
The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.
J Appl Physiol (1985). 2013 Aug 1;115(3):313-24. doi: 10.1152/japplphysiol.01531.2012. Epub 2013 Apr 25.
2
Interrelationships between regional blood flow, blood volume, and ventilation in supine humans.
J Appl Physiol (1985). 1994 Mar;76(3):1205-10. doi: 10.1152/jappl.1994.76.3.1205.
4
Regional ventilation-perfusion distribution is more uniform in the prone position.
J Appl Physiol (1985). 2000 Mar;88(3):1076-83. doi: 10.1152/jappl.2000.88.3.1076.
5
Pulmonary perfusion in the prone and supine postures in the normal human lung.
J Appl Physiol (1985). 2007 Sep;103(3):883-94. doi: 10.1152/japplphysiol.00292.2007. Epub 2007 Jun 14.
6
Contributions of pulmonary perfusion and ventilation to heterogeneity in V(A)/Q measured by PET.
J Appl Physiol (1985). 1997 Apr;82(4):1163-76. doi: 10.1152/jappl.1997.82.4.1163.
7
Heavy upright exercise increases ventilation-perfusion mismatch in the basal lung: indirect evidence for interstitial pulmonary edema.
J Appl Physiol (1985). 2019 Aug 1;127(2):473-481. doi: 10.1152/japplphysiol.00056.2019. Epub 2019 Jun 27.
9
Rapid intravenous infusion of 20 mL/kg saline alters the distribution of perfusion in healthy supine humans.
Respir Physiol Neurobiol. 2012 Mar 15;180(2-3):331-41. doi: 10.1016/j.resp.2011.12.013. Epub 2011 Dec 31.

引用本文的文献

1
Functional patterns of healthy human respiratory dynamics by 3D MR spirometry.
Eur Radiol. 2025 Aug 8. doi: 10.1007/s00330-025-11838-0.
2
Imaging in animal models: bridging experimental findings and human pathophysiology.
Crit Care. 2025 Jul 26;29(1):327. doi: 10.1186/s13054-025-05574-6.
3
Advances in gas-exchange physiology and pathophysiology.
ERS Monogr. 2025 Apr;2025:12-31. doi: 10.1183/2312508x.10006124.
5
Vaping causes an acute BMI-dependent change in pulmonary blood flow.
Physiol Rep. 2024 Oct;12(20):e70094. doi: 10.14814/phy2.70094.
6
7
Interventional study of comparing body pressure in different prone positions in healthy young women.
J Phys Ther Sci. 2024 Sep;36(9):571-576. doi: 10.1589/jpts.36.571. Epub 2024 Sep 5.
8
Impact of intensive prone position therapy on outcomes in intubated patients with ARDS related to COVID-19.
Ann Intensive Care. 2024 Jun 27;14(1):100. doi: 10.1186/s13613-024-01340-z.
9
Quantitative Computed Tomography and Response to Pronation in COVID-19 ARDS.
Respir Care. 2024 Oct 25;69(11):1380-1391. doi: 10.4187/respcare.11625.
10
Assessing the pulmonary vascular responsiveness to oxygen with proton MRI.
J Appl Physiol (1985). 2024 Apr 1;136(4):853-863. doi: 10.1152/japplphysiol.00747.2023. Epub 2024 Feb 22.

本文引用的文献

1
Spatial distribution of ventilation and perfusion: mechanisms and regulation.
Compr Physiol. 2011 Jan;1(1):375-95. doi: 10.1002/cphy.c100002.
2
Imaging tools for the investigation of human gas exchange.
J Appl Physiol (1985). 2013 Aug 1;115(3):309-10. doi: 10.1152/japplphysiol.00591.2013. Epub 2013 May 23.
3
Effect of regional lung inflation on ventilation heterogeneity at different length scales during mechanical ventilation of normal sheep lungs.
J Appl Physiol (1985). 2012 Sep;113(6):947-57. doi: 10.1152/japplphysiol.01631.2011. Epub 2012 Jun 7.
4
Assessing potential errors of MRI-based measurements of pulmonary blood flow using a detailed network flow model.
J Appl Physiol (1985). 2012 Jul;113(1):130-41. doi: 10.1152/japplphysiol.00894.2011. Epub 2012 Apr 26.
5
Measuring lung water: ex vivo validation of multi-image gradient echo MRI.
J Magn Reson Imaging. 2011 Jul;34(1):220-4. doi: 10.1002/jmri.22600.
6
Lung regional stress and strain as a function of posture and ventilatory mode.
J Appl Physiol (1985). 2011 May;110(5):1374-83. doi: 10.1152/japplphysiol.00439.2010. Epub 2011 Mar 10.
8
Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI.
J Appl Physiol (1985). 2010 Dec;109(6):1950-9. doi: 10.1152/japplphysiol.00220.2010. Epub 2010 Oct 7.
10
Pulmonary perfusion heterogeneity is increased by sustained, heavy exercise in humans.
J Appl Physiol (1985). 2009 Nov;107(5):1559-68. doi: 10.1152/japplphysiol.00491.2009. Epub 2009 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验