Suppr超能文献

半导体量子点混合量子比特的量子控制和过程层析成像。

Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

机构信息

Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.

出版信息

Nature. 2014 Jul 3;511(7507):70-4. doi: 10.1038/nature13407.

Abstract

The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

摘要

在制造方法、物理结构和电压操作尺度等方面,量子点与现代微电子学中的晶体管具有相似性,这使得人们对半导体量子点中量子位(qubit)的发展产生了浓厚的兴趣。尽管量子点自旋量子位已经展示出了较长的相干时间,但它们的操控速度往往不如未来一些重要应用(如质因数分解)所需的那么快。此外,当量子位尽可能简单时,可提高可扩展性和制造可行性。以前的工作通过利用集成微磁铁、核自旋的动态泵送或添加第三个量子点,提高了自旋量子位旋转的速度。在这里,我们展示了一种混合自旋和电荷的量子位。它很简单,既不需要核态准备,也不需要微磁铁。与以前的双量子点量子位不同,混合量子位能够在布洛赫球的两个轴上进行快速旋转。我们在两个正交方向上演示了对布洛赫球的完全控制,其 π 旋转时间小于 100 皮秒,比任何其他双量子点快一个数量级以上。这种速度源于量子位的电荷特性,而其自旋特性则导致在广泛的栅极电压范围内对退相干具有抵抗力。我们在电控制半导体量子点量子位中实现了完整的过程层析成像,提取了 X 旋转(量子态之间的跃迁)的高保真度为 85%,Z 旋转(量子态之间的相位积累)的高保真度为 94%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验