Bøttcher C G L, Harvey S P, Fallahi S, Gardner G C, Manfra M J, Vool U, Bartlett S D, Yacoby A
Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
Stanford University, Stanford, CA, 94305, USA.
Nat Commun. 2022 Aug 15;13(1):4773. doi: 10.1038/s41467-022-32236-w.
Coupling qubits to a superconducting resonator provides a mechanism to enable long-distance entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a controllable spin-photon coupling based on a longitudinal interaction between a spin qubit and a resonator. We show that coupling a singlet-triplet qubit to a high-impedance superconducting resonator can produce the desired longitudinal coupling when the qubit is driven near the resonator's frequency. We measure the energy splitting of the qubit as a function of the drive amplitude and frequency of a microwave signal applied near the resonator antinode, revealing pronounced effects close to the resonator frequency due to longitudinal coupling. By tuning the amplitude of the drive, we reach a regime with longitudinal coupling exceeding 1 MHz. This mechanism for qubit-resonator coupling represents a stepping stone towards producing high-fidelity two-qubit gates mediated by a superconducting resonator.
将量子比特与超导谐振器耦合,为在基于半导体材料中自旋的量子计算机中实现长距离纠缠操作提供了一种机制。在此,我们展示了一种基于自旋量子比特与谐振器之间纵向相互作用的可控自旋 - 光子耦合。我们表明,当量子比特在谐振器频率附近被驱动时,将单重态 - 三重态量子比特与高阻抗超导谐振器耦合可产生所需的纵向耦合。我们测量了量子比特的能量分裂作为施加在谐振器波腹附近的微波信号的驱动幅度和频率的函数,揭示了由于纵向耦合在接近谐振器频率处产生的显著效应。通过调整驱动幅度,我们达到了纵向耦合超过1兆赫兹的状态。这种量子比特 - 谐振器耦合机制是迈向由超导谐振器介导产生高保真双量子比特门的一块垫脚石。