Giese Sebastian, Marsh Mark
MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
PLoS Pathog. 2014 Jul 3;10(7):e1004189. doi: 10.1371/journal.ppat.1004189. eCollection 2014 Jul.
Bst-2/Tetherin inhibits the release of HIV by tethering newly formed virus particles to the plasma membrane of infected cells. Although the mechanisms of Tetherin-mediated restriction are increasingly well understood, the biological relevance of this restriction in the natural target cells of HIV is unclear. Moreover, whether Tetherin exerts any restriction on the direct cell-cell spread of HIV across intercellular contacts remains controversial. Here we analyse the restriction endogenous Tetherin imposes on HIV transmission from primary human macrophages, one of the main targets of HIV in vivo. We find that the mRNA and protein levels of Tetherin in macrophages are comparable to those in T cells from the same donors, and are highly upregulated by type I interferons. Improved immunocytochemistry protocols enable us to demonstrate that Tetherin localises to the cell surface, the trans-Golgi network, and the macrophage HIV assembly compartments. Tetherin retains budded virions in the assembly compartments, thereby impeding the release and cell-free spread of HIV, but it is not required for the maintenance of these compartments per se. Notably, using a novel assay to quantify cell-cell spread, we show that Tetherin promotes the transfer of virus clusters from macrophages to T cells and thereby restricts the direct transmission of a dual-tropic HIV-1. Kinetic analyses provide support for the notion that this direct macrophage-T cell spread is mediated, at least in part, by so-called virological synapses. Finally, we demonstrate that the viral Vpu protein efficiently downregulates the cell surface and overall levels of Tetherin, and thereby abrogates this HIV restriction in macrophages. Together, our study shows that Tetherin, one of the most potent HIV restriction factors identified to date, can inhibit virus spread from primary macrophages, regardless of the mode of transmission.
Bst-2/束缚素通过将新形成的病毒颗粒束缚在受感染细胞的质膜上来抑制HIV的释放。尽管对束缚素介导的限制机制的理解越来越深入,但这种限制在HIV天然靶细胞中的生物学相关性尚不清楚。此外,束缚素是否对HIV通过细胞间接触进行的直接细胞间传播施加任何限制仍存在争议。在这里,我们分析了内源性束缚素对HIV从原代人巨噬细胞(HIV在体内的主要靶细胞之一)传播的限制作用。我们发现,巨噬细胞中束缚素的mRNA和蛋白质水平与来自相同供体的T细胞中的水平相当,并且受到I型干扰素的高度上调。改进的免疫细胞化学方法使我们能够证明束缚素定位于细胞表面、反式高尔基体网络和巨噬细胞HIV组装区室。束缚素将出芽的病毒粒子保留在组装区室中,从而阻碍HIV的释放和游离病毒传播,但维持这些区室本身并不需要束缚素。值得注意的是,使用一种新的检测方法来量化细胞间传播,我们发现束缚素促进病毒簇从巨噬细胞转移到T细胞,从而限制了双嗜性HIV-1的直接传播。动力学分析支持了这样一种观点,即这种直接的巨噬细胞-T细胞传播至少部分是由所谓的病毒突触介导的。最后,我们证明病毒Vpu蛋白有效地下调了束缚素的细胞表面水平和总体水平,从而消除了巨噬细胞中这种对HIV的限制。总之,我们的研究表明,束缚素是迄今为止发现的最有效的HIV限制因子之一,无论传播方式如何,都能抑制病毒从原代巨噬细胞中传播。