Eichner Martin, Schwehm Markus, Hain Johannes, Uphoff Helmut, Salzberger Bernd, Knuf Markus, Schmidt-Ott Ruprecht
Department for Clinical Epidemiology and Applied Biometry, University of Tübingen, Silcherstr, 5, 72076 Tübingen, Germany.
BMC Infect Dis. 2014 Jul 3;14:365. doi: 10.1186/1471-2334-14-365.
Influenza vaccines contain Influenza A and B antigens and are adjusted annually to match the characteristics of circulating viruses. In Germany, Influenza B viruses belonged to the B/Yamagata lineage, but since 2001, the antigenically distinct B/Victoria lineage has been co-circulating. Trivalent influenza vaccines (TIV) contain antigens of the two A subtypes A(H3N2) and A(H1N1), yet of only one B lineage, resulting in frequent vaccine mismatches. Since 2012, the WHO has been recommending vaccine strains from both B lineages, paving the way for quadrivalent influenza vaccines (QIV).
Using an individual-based simulation tool, we simulate the concomitant transmission of four influenza strains, and compare the effects of TIV and QIV on the infection incidence. Individuals are connected in a dynamically evolving age-dependent contact network based on the POLYMOD matrix; their age-distribution reproduces German demographic data and predictions. The model considers maternal protection, boosting of existing immunity, loss of immunity, and cross-immunizing events between the B lineages. Calibration to the observed annual infection incidence of 10.6% among young adults yielded a basic reproduction number of 1.575. Vaccinations are performed annually in October and November, whereby coverage depends on the vaccinees' age, their risk status and previous vaccination status. New drift variants are introduced at random time points, leading to a sudden loss of protective immunity for part of the population and occasionally to reduced vaccine efficacy. Simulations run for 50 years, the first 30 of which are used for initialization. During the final 20 years, individuals receive TIV or QIV, using a mirrored simulation approach.
Using QIV, the mean annual infection incidence can be reduced from 8,943,000 to 8,548,000, i.e. by 395,000 infections, preventing 11.2% of all Influenza B infections which still occur with TIV (95% CI: 10.7-11.8%). Using a lower B lineage cross protection than the baseline 60%, the number of Influenza B infections increases and the number additionally prevented by QIV can be 5.5 times as high.
Vaccination with TIV substantially reduces the Influenza incidence compared to no vaccination. Depending on the assumed degree of B lineage cross protection, QIV further reduces Influenza B incidence by 11-33%.
流感疫苗包含甲型和乙型流感抗原,并且每年都会进行调整以匹配流行病毒的特征。在德国,乙型流感病毒属于山形系,但自2001年以来,抗原性不同的维多利亚系也开始共同流行。三价流感疫苗(TIV)包含两种甲型亚型A(H3N2)和A(H1N1)的抗原,但仅包含一个乙型流感系的抗原,导致疫苗频繁出现错配情况。自2012年以来,世界卫生组织一直推荐使用来自两个乙型流感系的疫苗株,为四价流感疫苗(QIV)的出现铺平了道路。
我们使用基于个体的模拟工具,模拟四种流感毒株的同时传播,并比较TIV和QIV对感染发病率的影响。个体通过基于POLYMOD矩阵的动态演变的年龄依赖性接触网络相互连接;其年龄分布再现了德国的人口数据和预测情况。该模型考虑了母体保护、现有免疫力的增强、免疫力的丧失以及两个乙型流感系之间的交叉免疫事件。根据观察到的年轻成年人每年10.6%的感染发病率进行校准,得出基本再生数为1.575。每年10月和11月进行疫苗接种,接种覆盖率取决于接种者的年龄、风险状况和以前的接种状况。新的漂移变异株在随机时间点引入,导致部分人群的保护性免疫力突然丧失,偶尔还会导致疫苗效力降低。模拟运行50年,其中前30年用于初始化。在最后20年中,使用镜像模拟方法让个体接种TIV或QIV。
使用QIV,平均每年的感染发病率可从894.3万例降至854.8万例,即减少39.5万例感染,预防了所有仍会在接种TIV时发生的乙型流感感染中的11.2%(95%置信区间:10.7-11.8%)。如果使用比基线60%更低的乙型流感系交叉保护率,乙型流感感染数量会增加,QIV额外预防的感染数量可能会高出5.5倍。
与不接种疫苗相比,接种TIV可大幅降低流感发病率。根据假设的乙型流感系交叉保护程度,QIV可进一步将乙型流感发病率降低11%-33%。