Pandyarajan Vijay, Phillips Nelson B, Cox Gabriela P, Yang Yanwu, Whittaker Jonathan, Ismail-Beigi Faramarz, Weiss Michael A
From the Departments of Biochemistry.
Physiology and Biophysics.
J Biol Chem. 2014 Aug 22;289(34):23367-81. doi: 10.1074/jbc.M114.588277. Epub 2014 Jul 3.
Insulin provides a model for the therapeutic application of protein engineering. A paradigm in molecular pharmacology was defined by design of rapid-acting insulin analogs for the prandial control of glycemia. Such analogs, a cornerstone of current diabetes regimens, exhibit accelerated subcutaneous absorption due to more rapid disassembly of oligomeric species relative to wild-type insulin. This strategy is limited by a molecular trade-off between accelerated disassembly and enhanced susceptibility to degradation. Here, we demonstrate that this trade-off may be circumvented by nonstandard mutagenesis. Our studies employed Lys(B28), Pro(B29)-insulin ("lispro") as a model prandial analog that is less thermodynamically stable and more susceptible to fibrillation than is wild-type insulin. We have discovered that substitution of an invariant tyrosine adjoining the engineered sites in lispro (Tyr(B26)) by 3-iodo-Tyr (i) augments its thermodynamic stability (ΔΔGu 0.5 ± 0.2 kcal/mol), (ii) delays onset of fibrillation (lag time on gentle agitation at 37 °C was prolonged by 4-fold), (iii) enhances affinity for the insulin receptor (1.5 ± 0.1-fold), and (iv) preserves biological activity in a rat model of diabetes mellitus. (1)H NMR studies suggest that the bulky iodo-substituent packs within a nonpolar interchain crevice. Remarkably, the 3-iodo-Tyr(B26) modification stabilizes an oligomeric form of insulin pertinent to pharmaceutical formulation (the R6 zinc hexamer) but preserves rapid disassembly of the oligomeric form pertinent to subcutaneous absorption (T6 hexamer). By exploiting this allosteric switch, 3-iodo-Tyr(B26)-lispro thus illustrates how a nonstandard amino acid substitution can mitigate the unfavorable biophysical properties of an engineered protein while retaining its advantages.
胰岛素为蛋白质工程的治疗应用提供了一个模型。分子药理学中的一个范例是通过设计速效胰岛素类似物来控制餐后血糖。这类类似物是当前糖尿病治疗方案的基石,由于相对于野生型胰岛素,其寡聚体物种的拆解速度更快,因而皮下吸收加快。但这一策略受到加速拆解与降解易感性增强之间分子权衡的限制。在此,我们证明这种权衡可以通过非标准诱变来规避。我们的研究采用 Lys(B28)、Pro(B29) - 胰岛素(“赖脯胰岛素”)作为模型餐时类似物,它比野生型胰岛素的热力学稳定性更低,更易发生纤维化。我们发现用 3 - 碘酪氨酸(i)取代赖脯胰岛素中工程位点附近的不变酪氨酸(Tyr(B26)),(i) 增强了其热力学稳定性(ΔΔGu 为 0.5 ± 0.2 千卡/摩尔),(ii) 延迟了纤维化的起始(在 37°C 温和搅拌下的延迟时间延长了 4 倍),(iii) 增强了对胰岛素受体的亲和力(1.5 ± 0.1 倍),并且 (iv) 在糖尿病大鼠模型中保留了生物活性。(1)H NMR 研究表明,庞大的碘取代基堆积在非极性链间缝隙中。值得注意的是,3 - 碘 - Tyr(B26) 修饰稳定了与药物制剂相关的胰岛素寡聚体形式(R6 锌六聚体),但保留了与皮下吸收相关的寡聚体形式(T6 六聚体)的快速拆解。通过利用这种变构开关,3 - 碘 - Tyr(B26) - 赖脯胰岛素因此说明了非标准氨基酸取代如何在保留工程蛋白优势的同时减轻其不利的生物物理性质。