Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, TX 78758, USA.
National Institute for Materials Science, 1-1 Namiki Tsukuba Ibaraki 305-0044, Japan.
Science. 2014 Jul 4;345(6192):58-61. doi: 10.1126/science.1251003.
Bilayer graphene has a distinctive electronic structure influenced by a complex interplay between various degrees of freedom. We probed its chemical potential using double bilayer graphene heterostructures, separated by a hexagonal boron nitride dielectric. The chemical potential has a nonlinear carrier density dependence and bears signatures of electron-electron interactions. The data allowed a direct measurement of the electric field-induced bandgap at zero magnetic field, the orbital Landau level (LL) energies, and the broken-symmetry quantum Hall state gaps at high magnetic fields. We observe spin-to-valley polarized transitions for all half-filled LLs, as well as emerging phases at filling factors ν = 0 and ν = ±2. Furthermore, the data reveal interaction-driven negative compressibility and electron-hole asymmetry in N = 0, 1 LLs.
双层石墨烯具有独特的电子结构,受到各种自由度之间复杂相互作用的影响。我们使用双层石墨烯异质结构来探测其化学势,该异质结构由六方氮化硼介电层隔开。化学势具有非线性的载流子密度依赖性,并具有电子-电子相互作用的特征。这些数据允许直接测量零磁场下电场诱导的能隙、轨道朗道能级 (LL) 能量以及强磁场下非对称量子霍尔态的能隙。我们观察到所有半满 LL 的自旋-谷极化跃迁,以及填充因子 ν = 0 和 ν = ±2 时出现的新相。此外,数据还揭示了 N = 0、1 LL 中相互作用驱动的负压缩性和电子-空穴非对称性。