Little Dustin J, Li Grace, Ing Christopher, DiFrancesco Benjamin R, Bamford Natalie C, Robinson Howard, Nitz Mark, Pomès Régis, Howell P Lynne
Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8;Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8;
Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 3H6; and.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11013-8. doi: 10.1073/pnas.1406388111. Epub 2014 Jul 3.
Poly-β-1,6-N-acetyl-D-glucosamine (PNAG) is an exopolysaccharide produced by a wide variety of medically important bacteria. Polyglucosamine subunit B (PgaB) is responsible for the de-N-acetylation of PNAG, a process required for polymer export and biofilm formation. PgaB is located in the periplasm and likely bridges the inner membrane synthesis and outer membrane export machinery. Here, we present structural, functional, and molecular simulation data that suggest PgaB associates with PNAG continuously during periplasmic transport. We show that the association of PgaB's N- and C-terminal domains forms a cleft required for the binding and de-N-acetylation of PNAG. Molecular dynamics (MD) simulations of PgaB show a binding preference for N-acetylglucosamine (GlcNAc) to the N-terminal domain and glucosammonium to the C-terminal domain. Continuous ligand binding density is observed that extends around PgaB from the N-terminal domain active site to an electronegative groove on the C-terminal domain that would allow for a processive mechanism. PgaB's C-terminal domain (PgaB310-672) directly binds PNAG oligomers with dissociation constants of ∼1-3 mM, and the structures of PgaB310-672 in complex with β-1,6-(GlcNAc)6, GlcNAc, and glucosamine reveal a unique binding mode suitable for interaction with de-N-acetylated PNAG (dPNAG). Furthermore, PgaB310-672 contains a β-hairpin loop (βHL) important for binding PNAG that was disordered in previous PgaB42-655 structures and is highly dynamic in the MD simulations. We propose that conformational changes in PgaB310-672 mediated by the βHL on binding of PNAG/dPNAG play an important role in the targeting of the polymer for export and its release.
聚-β-1,6-N-乙酰-D-葡萄糖胺(PNAG)是多种具有重要医学意义的细菌产生的一种胞外多糖。聚葡萄糖胺亚基B(PgaB)负责PNAG的去N-乙酰化,这是聚合物输出和生物膜形成所需的过程。PgaB位于周质中,可能连接内膜合成和外膜输出机制。在这里,我们展示了结构、功能和分子模拟数据,表明PgaB在周质运输过程中与PNAG持续结合。我们表明,PgaB的N端和C端结构域的结合形成了PNAG结合和去N-乙酰化所需的裂隙。PgaB的分子动力学(MD)模拟显示,N-乙酰葡萄糖胺(GlcNAc)对N端结构域具有结合偏好,而葡糖铵对C端结构域具有结合偏好。观察到连续的配体结合密度,其从N端结构域活性位点围绕PgaB延伸至C端结构域上的一个负电凹槽,这将允许一种连续机制。PgaB的C端结构域(PgaB310 - 672)以约1 - 3 mM的解离常数直接结合PNAG寡聚物,并且PgaB310 - 672与β-1,6-(GlcNAc)6、GlcNAc和葡糖胺形成复合物的结构揭示了一种适合与去N-乙酰化PNAG(dPNAG)相互作用的独特结合模式。此外,PgaB310 - 672包含一个对结合PNAG很重要的β-发夹环(βHL),该环在先前的PgaB42 - 655结构中无序,并且在MD模拟中高度动态。我们提出,PNAG/dPNAG结合时由βHL介导的PgaB310 - 672构象变化在聚合物输出靶向及其释放中起重要作用。