Ngok Siu P, Lin Wan-Hsin, Anastasiadis Panos Z
Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
J Cell Sci. 2014 Aug 1;127(Pt 15):3205-15. doi: 10.1242/jcs.153197. Epub 2014 Jul 2.
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
细胞极化是上皮形态发生、细胞运动、细胞分裂和器官发生的基础过程。极性丧失使组织易患发育障碍,并促进癌症进展。上皮细胞极性的形成和建立是由极性蛋白复合物(即Crumb、分区缺陷蛋白(Par)和Scribble复合物)与Rho家族GTP酶(包括RhoA、Rac1和Cdc42)协同介导的。不同GTP酶的激活触发不同的下游信号通路,以调节蛋白质-蛋白质相互作用和细胞骨架重塑。这些小GTP酶的时空激活和失活由不同调节蛋白组成的复杂相互连接网络严格控制,包括鸟嘌呤核苷酸交换因子(GEF)、GTP酶激活蛋白(GAP)和鸟嘌呤核苷酸解离抑制剂(GDI)。在本述评中,我们重点关注目前对极性复合物如何与GEF和GAP相互作用以控制Rho GTP酶(RhoA的Crumb、Rac1的Par和Cdc42的Scribble)的精确位置和激活,从而促进哺乳动物上皮细胞顶-基极化的理解。GTP酶活性的相互排斥,尤其是RhoA和Rac1的相互排斥,这一点已得到充分证实,它提供了一种机制,通过该机制,通过不同Rho GTP酶起作用的极性复合物作为细胞变阻器,微调特定的下游途径,以区分和保留顶侧和基底外侧结构域。本文是关于建立极性的迷你聚焦的一部分。