Suppr超能文献

一种改良的皮质控制撞击技术,用于模拟小鼠轻度创伤性脑损伤的力学机制。

A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice.

机构信息

Department of Bioengineering, University of Pennsylvania , Philadelphia, PA , USA.

Bioengineering Center, Wayne State University , Detroit, MI , USA.

出版信息

Front Neurol. 2014 Jun 18;5:100. doi: 10.3389/fneur.2014.00100. eCollection 2014.

Abstract

For the past 25 years, controlled cortical impact (CCI) has been a useful tool in traumatic brain injury (TBI) research, creating injury patterns that includes primary contusion, neuronal loss, and traumatic axonal damage. However, when CCI was first developed, very little was known on the underlying biomechanics of mild TBI. This paper uses information generated from recent computational models of mild TBI in humans to alter CCI and better reflect the biomechanical conditions of mild TBI. Using a finite element model of CCI in the mouse, we adjusted three primary features of CCI: the speed of the impact to achieve strain rates within the range associated with mild TBI, the shape, and material of the impounder to minimize strain concentrations in the brain, and the impact depth to control the peak deformation that occurred in the cortex and hippocampus. For these modified cortical impact conditions, we observed peak strains and strain rates throughout the brain were significantly reduced and consistent with estimated strains and strain rates observed in human mild TBI. We saw breakdown of the blood-brain barrier but no primary hemorrhage. Moreover, neuronal degeneration, axonal injury, and both astrocytic and microglia reactivity were observed up to 8 days after injury. Significant deficits in rotarod performance appeared early after injury, but we observed no impairment in spatial object recognition or contextual fear conditioning response 5 and 8 days after injury, respectively. Together, these data show that simulating the biomechanical conditions of mild TBI with a modified cortical impact technique produces regions of cellular reactivity and neuronal loss that coincide with only a transient behavioral impairment.

摘要

在过去的 25 年中,皮质控制撞击(CCI)已成为外伤性脑损伤(TBI)研究中的有用工具,可创建包括原发性挫伤、神经元丧失和创伤性轴索损伤在内的损伤模式。但是,当 CCI 最初开发时,人们对轻度 TBI 的潜在生物力学知之甚少。本文使用最近在人类中进行的轻度 TBI 的计算模型生成的信息来改变 CCI,并更好地反映轻度 TBI 的生物力学条件。我们使用鼠标的 CCI 有限元模型,调整了 CCI 的三个主要特征:撞击速度,以实现与轻度 TBI 相关的应变率范围内的速度;撞击器的形状和材料,以最大程度地减少大脑中的应变集中;以及撞击深度,以控制皮质和海马中发生的峰值变形。对于这些经过修改的皮质冲击条件,我们观察到整个大脑中的峰值应变和应变速率均显著降低,并且与在人类轻度 TBI 中观察到的应变和应变速率一致。我们观察到血脑屏障破裂,但没有原发性出血。此外,在损伤后 8 天内观察到神经元变性,轴突损伤以及星形胶质细胞和小胶质细胞的反应。在损伤后早期,旋转棒性能出现明显缺陷,但我们分别在损伤后 5 天和 8 天观察到空间物体识别或上下文恐惧条件反应没有受损。总的来说,这些数据表明,用改良的皮质撞击技术模拟轻度 TBI 的生物力学条件会产生与短暂的行为障碍一致的细胞反应和神经元丧失区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0cb/4061598/f0d4de678c70/fneur-05-00100-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验