Patterson Ethan S, Waller Laura E, Kroll Kristen L
Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
Dev Biol. 2014 Sep 1;393(1):44-56. doi: 10.1016/j.ydbio.2014.06.021. Epub 2014 Jul 1.
Geminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning. Geminin was required in the NT within a critical developmental time window (embryonic day 8.5-10.5), when NT patterning and closure occurs. Geminin excision at these stages resulted in strongly diminished expression of genes that mark and promote dorsal NT identities and decreased differentiation of ventral motor neurons, resulting in completely penetrant NT defects, while excision after embryonic day 10.5 did not result in NT defects. When Geminin was deleted specifically in the spinal NT, both NT defects and axial skeleton defects were observed, but neither defect occurred when Geminin was excised in paraxial mesenchyme, indicating a tissue autonomous requirement for Geminin in developing neuroectoderm. Despite a potential role for Geminin in cell cycle control, we found no evidence of proliferation defects or altered apoptosis. Comparisons of gene expression in the NT of Geminin mutant versus wild-type siblings at embryonic day 10.5 revealed decreased expression of key regulators of neurogenesis, including neurogenic bHLH transcription factors and dorsal interneuron progenitor markers. Together, these data demonstrate a requirement for Geminin for NT patterning and neuronal differentiation during mammalian neurulation in vivo.
Geminin是一种核蛋白,它可以直接结合染色质调节复合物,在发育过程中调节基因表达。Geminin基因敲除的小鼠胚胎在32细胞阶段前植入致死,这使得无法在体内研究Geminin在神经发育中的作用。因此,我们在这里使用了一个条件性Geminin等位基因,并结合几个Cre驱动系,来确定Geminin在哺乳动物神经管(NT)形成和模式化过程中的重要作用。在关键的发育时间窗口(胚胎第8.5 - 10.5天),即NT模式化和闭合发生时,NT中需要Geminin。在这些阶段切除Geminin会导致标记和促进背侧NT身份的基因表达大幅减少,以及腹侧运动神经元的分化减少,从而导致完全穿透性的NT缺陷,而在胚胎第10.5天后切除则不会导致NT缺陷。当在脊髓NT中特异性删除Geminin时,会观察到NT缺陷和轴向骨骼缺陷,但在轴旁间充质中切除Geminin时,这两种缺陷都不会出现这表明在发育中的神经外胚层中,Geminin对组织具有自主性需求。尽管Geminin在细胞周期控制中可能起作用,但我们没有发现增殖缺陷或凋亡改变的证据。对胚胎第10.5天Geminin突变体与野生型同胞NT中基因表达的比较显示,神经发生关键调节因子的表达降低,包括神经源性bHLH转录因子和背侧中间神经元祖细胞标记物。总之,这些数据表明在体内哺乳动物神经胚形成过程中,NT模式化和神经元分化需要Geminin。