The F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN 47405, USA.
Cell. 2014 Jul 3;158(1):54-68. doi: 10.1016/j.cell.2014.06.007.
Cells allocate substantial resources toward monitoring levels of nutrients that can be used for ATP generation by mitochondria. Among the many specialized cell types, neurons are particularly dependent on mitochondria due to their complex morphology and regional energy needs. Here, we report a molecular mechanism by which nutrient availability in the form of extracellular glucose and the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, regulates mitochondrial motility in neurons. Activation of OGT diminishes mitochondrial motility. We establish the mitochondrial motor-adaptor protein Milton as a required substrate for OGT to arrest mitochondrial motility by mapping and mutating the key O-GlcNAcylated serine residues. We find that the GlcNAcylation state of Milton is altered by extracellular glucose and that OGT alters mitochondrial motility in vivo. Our findings suggest that, by dynamically regulating Milton GlcNAcylation, OGT tailors mitochondrial dynamics in neurons based on nutrient availability.
细胞会分配大量资源来监测可用于线粒体生成 ATP 的营养物质水平。在许多特化的细胞类型中,神经元由于其复杂的形态和区域能量需求,特别依赖于线粒体。在这里,我们报告了一种分子机制,即细胞外葡萄糖的形式的营养物质可用性和酶 O-连接的 N-乙酰葡糖胺转移酶 (OGT),其活性取决于葡萄糖的可用性,调节神经元中线粒体的运动。OGT 的激活会降低线粒体的运动性。我们通过绘制和突变关键的 O-GlcNAc 化丝氨酸残基,确定线粒体运动衔接蛋白 Milton 作为 OGT 使线粒体运动停止所必需的底物,从而建立了这一机制。我们发现,Milton 的 GlcNAc 化状态受细胞外葡萄糖的影响,OGT 在线粒体运动体内改变线粒体的运动性。我们的研究结果表明,通过动态调节 Milton 的 GlcNAc 化,OGT 根据营养物质的可用性来调整神经元中线粒体的动力学。