Fabris Michele, Matthijs Michiel, Carbonelle Sophie, Moses Tessa, Pollier Jacob, Dasseville Renaat, Baart Gino J E, Vyverman Wim, Goossens Alain
Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium.
Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.
New Phytol. 2014 Nov;204(3):521-535. doi: 10.1111/nph.12917. Epub 2014 Jul 3.
Diatoms are unicellular photosynthetic microalgae that play a major role in global primary production and aquatic biogeochemical cycling. Endosymbiotic events and recurrent gene transfers uniquely shaped the genome of diatoms, which contains features from several domains of life. The biosynthesis pathways of sterols, essential compounds in all eukaryotic cells, and many of the enzymes involved are evolutionarily conserved in eukaryotes. Although well characterized in most eukaryotes, the pathway leading to sterol biosynthesis in diatoms has remained hitherto unidentified. Through the DiatomCyc database we reconstructed the mevalonate and sterol biosynthetic pathways of the model diatom Phaeodactylum tricornutum in silico. We experimentally verified the predicted pathways using enzyme inhibitor, gene silencing and heterologous gene expression approaches. Our analysis revealed a peculiar, chimeric organization of the diatom sterol biosynthesis pathway, which possesses features of both plant and fungal pathways. Strikingly, it lacks a conventional squalene epoxidase and utilizes an extended oxidosqualene cyclase and a multifunctional isopentenyl diphosphate isomerase/squalene synthase enzyme. The reconstruction of the P. tricornutum sterol pathway underscores the metabolic plasticity of diatoms and offers important insights for the engineering of diatoms for sustainable production of biofuels and high-value chemicals.
硅藻是单细胞光合微藻,在全球初级生产和水生生物地球化学循环中发挥着重要作用。内共生事件和反复的基因转移独特地塑造了硅藻的基因组,该基因组包含来自多个生命领域的特征。甾醇是所有真核细胞中的必需化合物,其生物合成途径以及许多相关酶在真核生物中在进化上是保守的。尽管在大多数真核生物中已得到充分表征,但迄今为止,硅藻中导致甾醇生物合成的途径仍未确定。通过硅藻循环数据库,我们在计算机上重建了模式硅藻三角褐指藻的甲羟戊酸和甾醇生物合成途径。我们使用酶抑制剂、基因沉默和异源基因表达方法对预测的途径进行了实验验证。我们的分析揭示了硅藻甾醇生物合成途径的一种特殊的嵌合组织,它具有植物和真菌途径的特征。引人注目的是,它缺乏传统的角鲨烯环氧化酶,而是利用一种扩展的氧化角鲨烯环化酶和一种多功能异戊烯基二磷酸异构酶/角鲨烯合酶。三角褐指藻甾醇途径的重建强调了硅藻的代谢可塑性,并为工程改造硅藻以可持续生产生物燃料和高价值化学品提供了重要见解。