Suppr超能文献

通过纳米孔分析对HIV-1蛋白酶活性进行无标记实时测量。

Real-time label-free measurement of HIV-1 protease activity by nanopore analysis.

作者信息

Wang Liang, Han Yujing, Zhou Shuo, Guan Xiyun

机构信息

Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, United States.

Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, United States.

出版信息

Biosens Bioelectron. 2014 Dec 15;62:158-62. doi: 10.1016/j.bios.2014.06.041. Epub 2014 Jun 25.

Abstract

A label-free method for the measurement of the activity of HIV-1 protease is developed by real-time monitoring of the cleavage of a peptide substrate by HIV-1 protease in a nanopore. The method is rapid and sensitive: picomolar concentrations of HIV-1 protease could be detected in ~10 min. Simulated clinical samples are analyzed, and the activity of HIV-1 protease could be accurately detected. Our developed nanopore sensor design strategy should find useful applications in the development of stochastic sensors for other proteases of medical, pharmaceutical, and biological importance.

摘要

通过实时监测纳米孔中HIV-1蛋白酶对肽底物的切割,开发了一种用于测量HIV-1蛋白酶活性的无标记方法。该方法快速且灵敏:在约10分钟内可检测到皮摩尔浓度的HIV-1蛋白酶。对模拟临床样本进行了分析,并且能够准确检测HIV-1蛋白酶的活性。我们开发的纳米孔传感器设计策略应在开发用于医学、制药和生物学上具有重要意义的其他蛋白酶的随机传感器方面找到有用的应用。

相似文献

1
Real-time label-free measurement of HIV-1 protease activity by nanopore analysis.
Biosens Bioelectron. 2014 Dec 15;62:158-62. doi: 10.1016/j.bios.2014.06.041. Epub 2014 Jun 25.
2
Graphene oxide-based biosensing platform for rapid and sensitive detection of HIV-1 protease.
Anal Bioanal Chem. 2018 Sep;410(24):6177-6185. doi: 10.1007/s00216-018-1224-2. Epub 2018 Jul 2.
3
Nanopore detects γ-radiation inhibited HIV-1 protease activity.
Biosens Bioelectron. 2021 Dec 15;194:113602. doi: 10.1016/j.bios.2021.113602. Epub 2021 Aug 30.
4
Detection and Quantification of Label-Free Infectious Adenovirus Using a Switch-On Cell-Based Fluorescent Biosensor.
ACS Sens. 2019 Jun 28;4(6):1654-1661. doi: 10.1021/acssensors.9b00489. Epub 2019 Jun 5.
7
An alternate-subsite-coupled model for predicting HIV protease cleavage sites in proteins.
Protein Eng. 1994 Jan;7(1):65-73. doi: 10.1093/protein/7.1.65.
8
Continuous assay of the hydrolytic activity of human immunodeficiency virus-1 protease.
Anal Biochem. 1992 Jan;200(1):143-8. doi: 10.1016/0003-2697(92)90290-n.
9
HIV-1 protease cleavage site prediction based on amino acid property.
J Comput Chem. 2009 Jan 15;30(1):33-9. doi: 10.1002/jcc.21024.

引用本文的文献

1
Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis.
Trends Analyt Chem. 2023 May;162. doi: 10.1016/j.trac.2023.117060. Epub 2023 Apr 11.
3
Simultaneous detection of multiple proteases using a non-array nanopore platform.
Nanoscale. 2021 Aug 28;13(32):13658-13664. doi: 10.1039/d1nr04085e. Epub 2021 Aug 3.
4
Single-molecule Study on the Interactions between Cyclic Nonribosomal Peptides and Protein Nanopore.
ACS Appl Bio Mater. 2020 Jan 21;3(1):554-560. doi: 10.1021/acsabm.9b00961. Epub 2019 Dec 16.
5
Nanopore detection of metal ions: Current status and future directions.
Small Methods. 2020 Oct 9;4(10). doi: 10.1002/smtd.202000266. Epub 2020 Aug 9.
6
Chemically functionalized conical PET nanopore for protein detection at the single-molecule level.
Biosens Bioelectron. 2020 Oct 1;165:112289. doi: 10.1016/j.bios.2020.112289. Epub 2020 May 16.
7
Salt-Mediated Nanopore Detection of ADAM-17.
ACS Appl Bio Mater. 2019 Jan 22;2(1):504-509. doi: 10.1021/acsabm.8b00689. Epub 2018 Dec 24.
8
Monitoring Proteolytic Activity in Real Time: A New World of Opportunities for Biosensors.
Trends Biochem Sci. 2020 Jul;45(7):604-618. doi: 10.1016/j.tibs.2020.03.011. Epub 2020 May 5.
9
A Nanopore Approach for Analysis of Caspase-7 Activity in Cell Lysates.
Biophys J. 2019 Sep 3;117(5):844-855. doi: 10.1016/j.bpj.2019.07.045. Epub 2019 Aug 2.

本文引用的文献

1
Nanopore detection of copper ions using a polyhistidine probe.
Biosens Bioelectron. 2014 Mar 15;53:453-8. doi: 10.1016/j.bios.2013.10.013. Epub 2013 Oct 23.
3
Molecule-hugging graphene nanopores.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12192-6. doi: 10.1073/pnas.1220012110. Epub 2013 Jul 8.
5
Real-time monitoring of disintegration activity of catalytic core domain of HIV-1 integrase using molecular beacon.
Anal Biochem. 2013 Sep 15;440(2):120-2. doi: 10.1016/j.ab.2013.05.032. Epub 2013 Jun 6.
6
Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay.
PLoS Pathog. 2013;9(5):e1003398. doi: 10.1371/journal.ppat.1003398. Epub 2013 May 30.
7
Nanopore stochastic detection: diversity, sensitivity, and beyond.
Acc Chem Res. 2013 Dec 17;46(12):2867-77. doi: 10.1021/ar400031x. Epub 2013 Apr 24.
8
Probing mercury(II)-DNA interactions by nanopore stochastic sensing.
J Phys Chem B. 2013 May 2;117(17):4763-9. doi: 10.1021/jp309541h. Epub 2013 Apr 23.
9
Recent trends in nanopores for biotechnology.
Curr Opin Biotechnol. 2013 Aug;24(4):699-704. doi: 10.1016/j.copbio.2012.11.008. Epub 2012 Dec 19.
10
A novel and rapid assay for HIV-1 protease detection using magnetic bead mediation.
Biosens Bioelectron. 2013 Mar 15;41:335-41. doi: 10.1016/j.bios.2012.08.049. Epub 2012 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验