Suppr超能文献

神经修复术后慢波睡眠中涌现任务相关集合的再激活。

Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning.

机构信息

1] Neurology and Rehabilitation Department, San Francisco VA Medical Center, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, California, USA.

1] Neurology and Rehabilitation Department, San Francisco VA Medical Center, San Francisco, California, USA. [2] Department of Psychiatry, San Francisco VA Medical Center, San Francisco, California, USA. [3] Department of Psychiatry, University of California, San Francisco, California, USA.

出版信息

Nat Neurosci. 2014 Aug;17(8):1107-13. doi: 10.1038/nn.3759. Epub 2014 Jul 6.

Abstract

Brain-machine interfaces can allow neural control over assistive devices. They also provide an important platform for studying neural plasticity. Recent studies have suggested that optimal engagement of learning is essential for robust neuroprosthetic control. However, little is known about the neural processes that may consolidate a neuroprosthetic skill. On the basis of the growing body of evidence linking slow-wave activity (SWA) during sleep to consolidation, we examined whether there is 'offline' processing after neuroprosthetic learning. Using a rodent model, we found that, after successful learning, task-related units specifically experienced increased locking and coherency to SWA during sleep. Moreover, spike-spike coherence among these units was substantially enhanced. These changes were not present with poor skill acquisition or after control awake periods, demonstrating the specificity of our observations to learning. Notably, the time spent in SWA predicted the performance gains. Thus, SWA appears to be involved in offline processing after neuroprosthetic learning.

摘要

脑机接口可以实现神经对辅助设备的控制。它们也为研究神经可塑性提供了重要平台。最近的研究表明,学习的最佳参与对于稳健的神经假肢控制至关重要。然而,对于可能巩固神经假肢技能的神经过程知之甚少。基于越来越多的证据将睡眠期间的慢波活动 (SWA) 与巩固联系起来,我们研究了在神经假肢学习后是否存在“离线”处理。使用啮齿动物模型,我们发现,在成功学习后,与任务相关的单元在睡眠期间特异性地经历了与 SWA 的增加锁定和相干性。此外,这些单元之间的尖峰尖峰相干性得到了显著增强。这些变化在技能获取不佳或控制清醒期间不存在,表明我们的观察结果具有学习的特异性。值得注意的是,SWA 时间预测了性能增益。因此,SWA 似乎参与了神经假肢学习后的离线处理。

相似文献

1
Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning.
Nat Neurosci. 2014 Aug;17(8):1107-13. doi: 10.1038/nn.3759. Epub 2014 Jul 6.
2
Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.
PLoS Biol. 2015 Sep 18;13(9):e1002263. doi: 10.1371/journal.pbio.1002263. eCollection 2015.
3
Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills.
Nature. 2012 Mar 4;483(7389):331-5. doi: 10.1038/nature10845.
6
Neural correlates of skill acquisition with a cortical brain-machine interface.
J Mot Behav. 2010 Nov;42(6):355-60. doi: 10.1080/00222895.2010.526457.
7
Robust neuroprosthetic control from the stroke perilesional cortex.
J Neurosci. 2015 Jun 3;35(22):8653-61. doi: 10.1523/JNEUROSCI.5007-14.2015.
8
Modulation of Neural Spiking in Motor Cortex-Cerebellar Networks during Sleep Spindles.
eNeuro. 2024 May 6;11(5). doi: 10.1523/ENEURO.0150-23.2024. Print 2024 May.
9
Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control.
Neuron. 2017 Feb 22;93(4):955-970.e5. doi: 10.1016/j.neuron.2017.01.016. Epub 2017 Feb 9.
10
Differential corticostriatal plasticity during fast and slow motor skill learning in mice.
Curr Biol. 2004 Jul 13;14(13):1124-34. doi: 10.1016/j.cub.2004.06.053.

引用本文的文献

1
Human Sensorimotor Cortex Reactivates Recent Visuomotor Experience during Awake Rest.
eNeuro. 2025 Apr 28;12(4). doi: 10.1523/ENEURO.0134-25.2025. Print 2025 Apr.
2
Ensemble reactivations during brief rest drive fast learning of sequences.
Nature. 2025 Feb;638(8052):1034-1042. doi: 10.1038/s41586-024-08414-9. Epub 2025 Jan 15.
3
Mechanisms of brain self-regulation: psychological factors, mechanistic models and neural substrates.
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230093. doi: 10.1098/rstb.2023.0093. Epub 2024 Oct 21.
4
Transitioning from global to local computational strategies during brain-machine interface learning.
Front Neurosci. 2024 Apr 19;18:1371107. doi: 10.3389/fnins.2024.1371107. eCollection 2024.
5
Cortico-cerebellar coordination facilitates neuroprosthetic control.
Sci Adv. 2024 Apr 12;10(15):eadm8246. doi: 10.1126/sciadv.adm8246.
6
Memory Reactivation during Sleep Does Not Act Holistically on Object Memory.
J Neurosci. 2024 Jun 12;44(24):e0022242024. doi: 10.1523/JNEUROSCI.0022-24.2024.
7
Memory reactivation during sleep does not act holistically on object memory.
bioRxiv. 2024 Mar 15:2023.12.14.571683. doi: 10.1101/2023.12.14.571683.
8
Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study.
Front Neurol. 2023 Nov 30;14:1243575. doi: 10.3389/fneur.2023.1243575. eCollection 2023.
9
3T vs. 7T fMRI: capturing early human memory consolidation after motor task utilizing the observed higher functional specificity of 7T.
Front Neurosci. 2023 Aug 10;17:1215400. doi: 10.3389/fnins.2023.1215400. eCollection 2023.
10
Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study.
medRxiv. 2023 Oct 31:2023.05.01.23289359. doi: 10.1101/2023.05.01.23289359.

本文引用的文献

3
Temporally precise cell-specific coherence develops in corticostriatal networks during learning.
Neuron. 2013 Sep 4;79(5):865-72. doi: 10.1016/j.neuron.2013.06.047. Epub 2013 Aug 15.
4
"Master" neurons induced by operant conditioning in rat motor cortex during a brain-machine interface task.
J Neurosci. 2013 May 8;33(19):8308-20. doi: 10.1523/JNEUROSCI.2744-12.2013.
5
Sleep for preserving and transforming episodic memory.
Annu Rev Neurosci. 2013 Jul 8;36:79-102. doi: 10.1146/annurev-neuro-062012-170429. Epub 2013 Apr 29.
6
Detecting cell assemblies in large neuronal populations.
J Neurosci Methods. 2013 Nov 15;220(2):149-66. doi: 10.1016/j.jneumeth.2013.04.010. Epub 2013 Apr 29.
7
High-performance neuroprosthetic control by an individual with tetraplegia.
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.
8
A high-performance neural prosthesis enabled by control algorithm design.
Nat Neurosci. 2012 Dec;15(12):1752-7. doi: 10.1038/nn.3265. Epub 2012 Nov 18.
10
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验