Suppr超能文献

协调神经动力学的出现是神经假肢学习和熟练控制的基础。

Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control.

机构信息

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida de Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal.

Neurology and Rehabilitation Services, San Francisco VA Medical Center, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.

出版信息

Neuron. 2017 Feb 22;93(4):955-970.e5. doi: 10.1016/j.neuron.2017.01.016. Epub 2017 Feb 9.

Abstract

During motor learning, movements and underlying neural activity initially exhibit large trial-to-trial variability that decreases over learning. However, it is unclear how task-relevant neural populations coordinate to explore and consolidate activity patterns. Exploration and consolidation could happen for each neuron independently, across the population jointly, or both. We disambiguated among these possibilities by investigating how subjects learned de novo to control a brain-machine interface using neurons from motor cortex. We decomposed population activity into the sum of private and shared signals, which produce uncorrelated and correlated neural variance, respectively, and examined how these signals' evolution causally shapes behavior. We found that initially large trial-to-trial movement and private neural variability reduce over learning. Concomitantly, task-relevant shared variance increases, consolidating a manifold containing consistent neural trajectories that generate refined control. These results suggest that motor cortex acquires skillful control by leveraging both independent and coordinated variance to explore and consolidate neural patterns.

摘要

在运动学习过程中,运动和潜在的神经活动最初表现出很大的trial-to-trial 可变性,随着学习的进行而减少。然而,目前尚不清楚与任务相关的神经群体如何协调以探索和巩固活动模式。探索和巩固可能发生在每个神经元独立的情况下,也可能发生在整个群体共同的情况下,或者两者兼而有之。我们通过研究受试者如何使用运动皮层中的神经元从头开始学习控制脑机接口来澄清这些可能性。我们将群体活动分解为私有和共享信号的总和,分别产生不相关和相关的神经方差,并检查这些信号的演变如何因果地塑造行为。我们发现,最初的trial-to-trial 运动和私有神经可变性随着学习的进行而减少。同时,与任务相关的共享方差增加,巩固了一个包含一致神经轨迹的流形,这些轨迹产生了更精细的控制。这些结果表明,运动皮层通过利用独立和协调的方差来探索和巩固神经模式,从而获得熟练的控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验