文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的增强现实技术提高手术场景理解

Machine learning-based augmented reality for improved surgical scene understanding.

机构信息

Computer Aided Medical Procedures, Technische Universität, München, Germany; Institute of Biomathematics and Biometry, Helmholtz Zentrum, München, Germany.

Computer Aided Medical Procedures, Technische Universität, München, Germany.

出版信息

Comput Med Imaging Graph. 2015 Apr;41:55-60. doi: 10.1016/j.compmedimag.2014.06.007. Epub 2014 Jun 19.


DOI:10.1016/j.compmedimag.2014.06.007
PMID:24998759
Abstract

In orthopedic and trauma surgery, AR technology can support surgeons in the challenging task of understanding the spatial relationships between the anatomy, the implants and their tools. In this context, we propose a novel augmented visualization of the surgical scene that mixes intelligently the different sources of information provided by a mobile C-arm combined with a Kinect RGB-Depth sensor. Therefore, we introduce a learning-based paradigm that aims at (1) identifying the relevant objects or anatomy in both Kinect and X-ray data, and (2) creating an object-specific pixel-wise alpha map that permits relevance-based fusion of the video and the X-ray images within one single view. In 12 simulated surgeries, we show very promising results aiming at providing for surgeons a better surgical scene understanding as well as an improved depth perception.

摘要

在骨科和创伤外科中,AR 技术可以帮助外科医生理解解剖结构、植入物及其工具之间的空间关系,从而支持他们完成具有挑战性的任务。在这种情况下,我们提出了一种新颖的手术场景增强可视化方法,该方法可以智能混合移动 C 臂与 Kinect RGB-Depth 传感器提供的不同信息源。因此,我们引入了一种基于学习的范例,旨在(1)识别 Kinect 和 X 射线数据中的相关对象或解剖结构,以及(2)创建特定于对象的像素级 alpha 映射,以便在单个视图中基于相关性融合视频和 X 射线图像。在 12 次模拟手术中,我们展示了非常有前途的结果,旨在为外科医生提供更好的手术场景理解和增强的深度感知。

相似文献

[1]
Machine learning-based augmented reality for improved surgical scene understanding.

Comput Med Imaging Graph. 2014-6-19

[2]
Hybrid navigation interface for orthopedic and trauma surgery.

Med Image Comput Comput Assist Interv. 2006

[3]
A multi-view Opto-Xray imaging system: development and first application in trauma surgery.

Med Image Comput Comput Assist Interv. 2007

[4]
3D global estimation and augmented reality visualization of intra-operative X-ray dose.

Med Image Comput Comput Assist Interv. 2014

[5]
A system for real-time XMR guided cardiovascular intervention.

IEEE Trans Med Imaging. 2005-11

[6]
Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

Comput Med Imaging Graph. 2015-3

[7]
Real-time recognition of surgical tasks in eye surgery videos.

Med Image Anal. 2014-2-26

[8]
A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus.

IEEE Trans Med Imaging. 2005-11

[9]
Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes.

Med Image Anal. 2010-12-10

[10]
Landmark-based augmented reality system for paranasal and transnasal endoscopic surgeries.

Int J Med Robot. 2009-12

引用本文的文献

[1]
Artificial Intelligence and Breast Cancer Management: From Data to the Clinic.

Cancer Innov. 2025-2-20

[2]
Artificial Intelligence-Based Hazard Detection in Robotic-Assisted Single-Incision Oncologic Surgery.

Cancers (Basel). 2023-6-28

[3]
Medical Augmented Reality: Definition, Principle Components, Domain Modeling, and Design-Development-Validation Process.

J Imaging. 2022-12-23

[4]
How molecular imaging will enable robotic precision surgery : The role of artificial intelligence, augmented reality, and navigation.

Eur J Nucl Med Mol Imaging. 2021-12

[5]
Opportunities and challenges of using augmented reality and heads-up display in orthopaedic surgery: A narrative review.

J Clin Orthop Trauma. 2021-5-5

[6]
CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer Assisted Interventions.

Proc IEEE Inst Electr Electron Eng. 2020-1

[7]
Use of Commercial Off-The-Shelf Devices for the Detection of Manual Gestures in Surgery: Systematic Literature Review.

J Med Internet Res. 2019-4-14

[8]
Evaluation of Kinect 3D Sensor for Healthcare Imaging.

J Med Biol Eng. 2016

[9]
Preclinical usability study of multiple augmented reality concepts for K-wire placement.

Int J Comput Assist Radiol Surg. 2016-6

[10]
Precise 3D/2D calibration between a RGB-D sensor and a C-arm fluoroscope.

Int J Comput Assist Radiol Surg. 2016-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索