Suppr超能文献

多孔与无孔骨水泥的生物相容性:一种新的方法学途径。

The biocompatibility of porous vs non-porous bone cements: a new methodological approach.

作者信息

Dall'Oca C, Maluta T, Cavani F, Morbioli G P, Bernardi P, Sbarbati A, Degl'Innocenti D, Magnan B

机构信息

University of Verona.

出版信息

Eur J Histochem. 2014 Jun 23;58(2):2255. doi: 10.4081/ejh.2014.2255.

Abstract

Composite cements have been shown to be biocompatible, bioactive, with good mechanical properties and capability to bind to the bone. Despite these interesting characteristic, in vivo studies on animal models are still incomplete and ultrastructural data are lacking. The acquisition of new ultrastructural data is hampered by uncertainties in the methods of preparation of histological samples due to the use of resins that melt methacrylate present in bone cement composition. A new porous acrylic cement composed of polymethylmetacrylate (PMMA) and β-tricalciumphosphate (β-TCP) was developed and tested on an animal model. The cement was implanted in femurs of 8 New Zealand White rabbits, which were observed for 8 weeks before their sacrifice. Histological samples were prepared with an infiltration process of LR white resin and then the specimens were studied by X-rays, histology and scanning electron microscopy (SEM). As a control, an acrylic standard cement, commonly used in clinical procedures, was chosen. Radiographic ultrastructural and histological exams have allowed finding an excellent biocompatibility of the new porous cement. The high degree of osteointegration was demonstrated by growth of neo-created bone tissue inside the cement sample. Local or systemic toxicity signs were not detected. The present work shows that the proposed procedure for the evaluation of biocompatibility, based on the use of LR white resin allows to make a thorough and objective assessment of the biocompatibility of porous and non-porous bone cements.

摘要

复合骨水泥已被证明具有生物相容性、生物活性,具备良好的机械性能以及与骨结合的能力。尽管有这些有趣的特性,但在动物模型上进行的体内研究仍不完整,且缺乏超微结构数据。由于骨水泥成分中存在的甲基丙烯酸酯会在制备组织学样本时使用的树脂中熔化,这导致组织学样本制备方法存在不确定性,从而阻碍了新超微结构数据的获取。一种由聚甲基丙烯酸甲酯(PMMA)和β - 磷酸三钙(β - TCP)组成的新型多孔丙烯酸骨水泥被研发出来,并在动物模型上进行了测试。将该骨水泥植入8只新西兰白兔的股骨中,在处死前观察8周。采用LR白色树脂浸润法制备组织学样本,然后通过X射线、组织学和扫描电子显微镜(SEM)对样本进行研究。作为对照,选用了临床手术中常用的丙烯酸标准骨水泥。放射学、超微结构和组织学检查表明,新型多孔骨水泥具有优异的生物相容性。骨水泥样本内部新生骨组织的生长证明了高度的骨整合。未检测到局部或全身毒性迹象。目前的研究表明,基于使用LR白色树脂的生物相容性评估方法能够对多孔和非多孔骨水泥的生物相容性进行全面、客观的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58be/4083320/21b60a179b68/ejh-2014-2-2255-g001.jpg

相似文献

1
The biocompatibility of porous vs non-porous bone cements: a new methodological approach.
Eur J Histochem. 2014 Jun 23;58(2):2255. doi: 10.4081/ejh.2014.2255.
2
The biocompatibility of bone cements: progress in methodological approach.
Eur J Histochem. 2017 May 4;61(2):2673. doi: 10.4081/ejh.2017.2673.
3
Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue.
Clin Oral Implants Res. 2013 Aug;24 Suppl A100:100-9. doi: 10.1111/j.1600-0501.2011.02388.x. Epub 2011 Dec 8.
5
Safety, osseointegration, and bone ingrowth analysis of PMMA-based porous cement on animal metaphyseal bone defect model.
J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):649-658. doi: 10.1002/jbm.b.33870. Epub 2017 Mar 9.
6
Bone Response to Porous Poly(methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model.
Tissue Eng Part C Methods. 2017 May;23(5):262-273. doi: 10.1089/ten.TEC.2016.0521. Epub 2017 Apr 26.
7
Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study.
J Mater Sci Mater Med. 2016 Dec;27(12):191. doi: 10.1007/s10856-016-5806-2. Epub 2016 Nov 14.
9
[In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013 Mar;27(3):320-5.

引用本文的文献

2
Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model.
Acta Biomater. 2021 Dec;136:233-242. doi: 10.1016/j.actbio.2021.09.041. Epub 2021 Sep 24.
3
Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization.
Biomaterials. 2021 Sep;276:120995. doi: 10.1016/j.biomaterials.2021.120995. Epub 2021 Jul 1.
5
Controlling Antibiotic Release from Polymethylmethacrylate Bone Cement.
Biomedicines. 2021 Jan 1;9(1):26. doi: 10.3390/biomedicines9010026.
6
Ultrastructural histochemistry in biomedical research: Alive and kicking.
Eur J Histochem. 2018 Nov 7;62(4):2990. doi: 10.4081/ejh.2018.2990.
7
Three-Dimensional (3D) Printed Microneedles for Microencapsulated Cell Extrusion.
Bioengineering (Basel). 2018 Jul 31;5(3):59. doi: 10.3390/bioengineering5030059.
8
The biocompatibility of bone cements: progress in methodological approach.
Eur J Histochem. 2017 May 4;61(2):2673. doi: 10.4081/ejh.2017.2673.
9
Is there still room for novelty, in histochemical papers?
Eur J Histochem. 2016 Dec 16;60(4):2758. doi: 10.4081/ejh.2016.2758.
10
Histochemistry in biology and medicine: a message from the citing journals.
Eur J Histochem. 2015 Dec 23;59(4):2610. doi: 10.4081/ejh.2015.2610.

本文引用的文献

1
Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: properties and biocompatibility assessment.
Mater Sci Eng C Mater Biol Appl. 2013 Apr 1;33(3):1289-99. doi: 10.1016/j.msec.2012.12.028. Epub 2012 Dec 13.
2
Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep.
Eur J Pharm Biopharm. 2013 Sep;85(1):130-8. doi: 10.1016/j.ejpb.2013.04.013. Epub 2013 May 13.
3
Evaluation of scaffolds based on α-tricalcium phosphate cements for tissue engineering applications.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1814-9. doi: 10.1109/TBME.2011.2117425. Epub 2011 Feb 22.
4
Subcutaneous adipose tissue classification.
Eur J Histochem. 2010 Nov 25;54(4):e48. doi: 10.4081/ejh.2010.e48.
5
Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing.
Injury. 2010 Nov;41(11):1150-5. doi: 10.1016/j.injury.2010.09.026. Epub 2010 Oct 6.
6
Long-term outcomes of vertebroplasty for osteoporotic compression fractures.
J Med Imaging Radiat Oncol. 2010 Aug;54(4):307-14. doi: 10.1111/j.1754-9485.2010.02176.x.
7
A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair.
Acta Biomater. 2011 Jan;7(1):16-30. doi: 10.1016/j.actbio.2010.07.012. Epub 2010 Jul 21.
8
Polymethylmethacrylate: properties and contemporary uses in orthopaedics.
J Am Acad Orthop Surg. 2010 May;18(5):297-305. doi: 10.5435/00124635-201005000-00006.
9
Relief of radicular pain in metastatic disease by vertebroplasty.
Acta Radiol. 2010 Mar;51(2):179-82. doi: 10.3109/02841850903431148.
10
Bonding ability evaluation of bone cement on the cortical surface of rabbit's tibia.
J Mater Sci Mater Med. 2010 Jan;21(1):139-46. doi: 10.1007/s10856-009-3861-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验