Auffan Mélanie, Tella Marie, Santaella Catherine, Brousset Lenka, Paillès Christine, Barakat Mohamed, Espinasse Benjamin, Artells Ester, Issartel Julien, Masion Armand, Rose Jérôme, Wiesner Mark R, Achouak Wafa, Thiéry Alain, Bottero Jean-Yves
1] CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France [2] International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France [3] Center for the Environmental Implications of NanoTechnology CEINT, Duke University, Durham, North Carolina 27707, USA.
1] CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France [2] International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France.
Sci Rep. 2014 Jul 8;4:5608. doi: 10.1038/srep05608.
Physical-chemists, (micro)biologists, and ecologists need to conduct meaningful experiments to study the environmental risk of engineered nanomaterials with access to relevant mechanistic data across several spatial and temporal scales. Indoor aquatic mesocosms (60L) that can be tailored to virtually mimic any ecosystem appear as a particularly well-suited device. Here, this concept is illustrated by a pilot study aimed at assessing the distribution of a CeO₂-based nanomaterial within our system at low concentration (1.5 mg/L). Physico-chemical as well as microbiological parameters took two weeks to equilibrate. These parameters were found to be reproducible across the 9-mesocosm setup over a 45-day period of time. Recovery mass balances of 115 ± 18% and 60 ± 30% of the Ce were obtained for the pulse dosing and the chronic dosing, respectively. This demonstrated the relevance of our experimental approach that allows for adequately monitoring the fate and impact of a given nanomaterial.
物理化学家、(微生物)生物学家和生态学家需要进行有意义的实验,以便在获取跨越多个空间和时间尺度的相关机理数据的情况下,研究工程纳米材料的环境风险。能够量身定制以几乎模拟任何生态系统的室内水生中型生态系统(60升)似乎是一种特别合适的装置。在此,通过一项试点研究来说明这一概念,该研究旨在评估低浓度(1.5毫克/升)下基于CeO₂的纳米材料在我们系统内的分布情况。物理化学以及微生物参数需要两周时间来达到平衡。发现在45天的时间内,这些参数在9个中型生态系统的设置中是可重复的。对于脉冲给药和长期给药,分别获得了铈的回收质量平衡为115±18%和60±30%。这证明了我们实验方法的相关性,该方法能够充分监测给定纳米材料的归宿和影响。