Suppr超能文献

使用多元模式分析解码神经表象空间。

Decoding neural representational spaces using multivariate pattern analysis.

机构信息

Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755; email:

出版信息

Annu Rev Neurosci. 2014;37:435-56. doi: 10.1146/annurev-neuro-062012-170325. Epub 2014 Jun 25.

Abstract

A major challenge for systems neuroscience is to break the neural code. Computational algorithms for encoding information into neural activity and extracting information from measured activity afford understanding of how percepts, memories, thought, and knowledge are represented in patterns of brain activity. The past decade and a half has seen significant advances in the development of methods for decoding human neural activity, such as multivariate pattern classification, representational similarity analysis, hyperalignment, and stimulus-model-based encoding and decoding. This article reviews these advances and integrates neural decoding methods into a common framework organized around the concept of high-dimensional representational spaces.

摘要

系统神经科学面临的一个主要挑战是破解神经密码。将信息编码为神经活动并从测量的活动中提取信息的计算算法使我们能够理解感知、记忆、思维和知识是如何以大脑活动模式来表示的。在过去的十五年中,用于解码人类神经活动的方法取得了重大进展,例如多元模式分类、表示相似性分析、超对准和基于刺激模型的编码和解码。本文回顾了这些进展,并将神经解码方法整合到一个以高维表示空间概念为组织的通用框架中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验